New normal diterapkan oleh pemerintah untuk mengembalikan masyarakat beraktivitas normal ditengah pandemi covid-19 dengan protokol kesehatan. Penerapan new normal menuai beragam komentar dari masyarakat dan masuk kedalam topik terpopuler di media sosial twitter. Analisis sentimen untuk memprediksi komentar ataupun opini masyarakat yang kecenderungan beropini positif maupun negatif. Preprocessing data menggunakan cleaning, case folding, normalisasi, stemming, filtering, dan tokenizing. Pada normalisasi kata bertujuan memperbaiki kesalahan penulisan kata (typo) berdasarkan KBBI dan TF-IDF sebagai metode pembobotan kata. Data yang digunakan terdiri dari 1000 tweet. Metode klasifikasi opini menggunakan metode K-Nearest Neighbor dan melakukan pengujian agar mendapatkan hasil akurasi yang paling terbaik serta mengevaluasi menggunakan confusion matrix. Hasil dari pelabelan untuk sentimen positif berjumlah 811 dan 189 untuk sentimen negatif. Klasifikasi K-NN dengan nilai k = 1 menghasilkan pengujian use training set dengan accuracy sebesar 100%, 92,60% untuk 10-fold cross-validation dan 94,50% untuk 80% percentage split.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.