Transition metal complexes are of increasing interest as photosensitizers in photodynamic therapy (PDT) and, more recently, for photochemotherapy (PCT). In recent years, Ru (II) polypyridyl complexes have emerged as the most widely studied systems for both PDT and PCT. Their rich photochemical and photophysical properties derive from a variety of excited-state electronic configurations accessible with visible and near-infrared light, and these properties can be exploited for both energy-and electron-transfer processes that can yield highly potent oxygen-dependent and/or oxygen-independent photobiological activity. Selected examples highlight the use of rational design in coordination chemistry to control the lowest-energy triplet excited state configurations for eliciting a particular type of photoreactivity for PDT and/or PCT effects. These principles are also discussed in the context of the development of TLD1433, the first Ru(II)-based photosensitizer for PDT to enter a human clinical trial. The design of TLD1433 arose from a tumor-centered approach, as part of a complete PDT package that included the light component and the protocol for treating nonmuscle invasive bladder cancer. Briefly, this review summarizes *
Members of a family of Ru(II)-appended pyrenylethynylene dyads were synthesized, characterized according to their photophysical and photobiological properties, and evaluated for their collective potential as photosensitizers for metal-organic photodynamic therapy. The dyads in this series possess lowest-lying (3)IL-based excited states with lifetimes that can be tuned from 22 to 270 μs in fluid solution and from 44 to 3440 μs in glass at 77 K. To our knowledge, these excited-state lifetimes are the longest reported for Ru(II)-based dyads containing only one organic chromophore and lacking terminal diimine groups. These excited states proved to be extremely sensitive to trace amounts of oxygen, owing to their long lifetimes and very low radiative rates. Herein, we demonstrate that (3)IL states of this nature are potent photodynamic agents, exhibiting the largest photocytotoxicity indices reported to date with nanomolar light cytotoxicities at very short drug-to-light intervals. Importantly, these new agents are robust enough to maintain submicromolar PDT in pigmented metastatic melanoma cells, where the presence of melanin in combination with low oxygen tension is known to compromise PDT. This activity underscores the potential of metal-organic PDT as an alternate treatment strategy for challenging environments such as malignant melanoma.
Hypoxia presents a two-fold challenge in the treatment of cancer, as low oxygen conditions induce biological changes that make malignant tissues simultaneously more aggressive and less susceptible to standard chemotherapy....
The purpose of the present investigation was to ascertain whether (3)IL excited states with microsecond lifetimes are universally potent for photodynamic applications, and if these long-lived states are superior to their (3)MLCT counterparts as in vitro PDT agents. A family of blue-green absorbing, Ru(II)-based transition metal complexes derived from the π-expansive dppn ligand was prepared and characterized according to its photodynamic activity against HL-60 cells, and toward DNA in cell-free media. Complexes in this series that are characterized by low-energy and long-lived (3)IL excited states photocleaved DNA with blue, green, red, and near-IR light. This panchromatic photodynamic effect translated to in vitro multiwavelength photodynamic therapy (PDT) with red-light cytotoxicities as low as 1.5 μM (EC50) for the parent complex and 400 nM for its more lipophilic counterpart. This potency is similar to that achieved with Ru(II)-based dyads containing long-lived (3)IL excitons located on appended pyrenyl units, and appears to be a general property of sufficiently long-lived excited states. Moreover, the red PDT observed for certain members of this family was almost 5 times more potent than Photofrin with therapeutic indices 30 times greater. Related Ru(II) complexes having lowest-lying (3)MLCT states of much shorter duration (≤1 μs) did not yield DNA photodamage or in vitro PDT with red or near-IR light, nor did the corresponding Os(II) complex with a submicrosecond (3)IL excited state lifetime. Therefore, metal complexes that utilize highly photosensitizing (3)IL excited states, with suitably long lifetimes (≫ 1 μs), are well-poised to elicit PDT at wavelengths even where their molar extinction coefficients are very low (<100 M(-1) cm(-1)). Herein we demonstrate that such unexpected reactivity gives rise to very effective PDT in the typical therapeutic window (600-850 nm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.