BackgroundSchistosomiasis and STH are among the list of neglected tropical diseases considered for control by the WHO. Although both diseases are endemic in Zimbabwe, no nationwide control interventions have been implemented. For this reason in 2009 the Zimbabwe Ministry of Health and Child Care included the two diseases in the 2009–2013 National Health Strategy highlighting the importance of understanding the distribution and burden of the diseases as a prerequisite for elimination interventions. It is against this background that a national survey was conducted.MethodologyA countrywide cross-sectional survey was carried out in 280 primary schools in 68 districts between September 2010 and August 2011. Schistosoma haematobium was diagnosed using the urine filtration technique. Schistosoma mansoni and STH (hookworms, Trichuris trichiura, Ascaris lumbricoides) were diagnosed using both the Kato Katz and formol ether concentration techniques.Main findingsSchistosomiasis was more prevalent country-wide (22.7%) than STH (5.5%). The prevalence of S. haematobium was 18.0% while that of S. mansoni was 7.2%. Hookworms were the most common STH with a prevalence of 3.2% followed by A. lumbricoides and T. trichiura with prevalence of 2.5% and 0.1%, respectively. The prevalence of heavy infection intensity as defined by WHO for any schistosome species was 5.8% (range 0%–18.3% in districts). Only light to moderate infection intensities were observed for STH species. The distribution of schistosomiasis and STH varied significantly between provinces, districts and schools (p<0.001). Overall, the prevalence of co-infection with schistosomiasis and STH was 1.5%. The actual co-endemicity of schistosomiasis and STH was observed in 43 (63.2%) of the 68 districts screened.Conclusion and recommendationsThis study provided comprehensive baseline data on the distribution of schistosomiasis and STH that formed the basis for initiating a national control and elimination programme for these two neglected tropical diseases in Zimbabwe.
Information on the prevalence, incidence, and geographical distribution of malaria in Zimbabwe is reviewed. Malaria control operations carried out during the last 30 years are briefly described together with available information of their impact on malaria. From 1972 to 1981, 51,962 positive blood slides were submitted to Blair Research Laboratory from health institutions, of which 97.8% were Plasmodium falciparum, 1.8% P. malariae and 0.3% P. ovale. Blood slide surveys undertaken from 1969 to 1981 during which time 156,194 slides were examined showed P. falciparum to constitute 92.5% of malaria infections, P. malariae 8.3% and P. ovale 0.7%. The data from active and passive case finding are used to describe the seasonal and geographical pattern of malaria in Zimbabwe. The seasonal peak of transmission occurs from February to May each year with very low transmission from July to October. Endemicity of malaria is shown to be markedly influenced by altitude varying from hyperendemic in the low altitude areas to hypoendemic or absent on the central watershed.
Antibodies to Plasmodium falciparum are specific biomarkers that can be used to monitor parasite exposure over broader time frames than microscopy, rapid diagnostic tests, or molecular assays. Consequently, seroprevalence surveys can assist with monitoring the impact of malaria control interventions, particularly in the final stages of elimination, when parasite incidence is low. The protein array format to measure antibodies to diverse P. falciparum antigens requires only small sample volumes and is high throughput, permitting the monitoring of malaria transmission on large spatial and temporal scales. We expanded the use of a protein microarray to assess malaria transmission in settings beyond those with a low malaria incidence. Antibody responses in children and adults were profiled, using a P. falciparum protein microarray, through community-based surveys in three areas in Zambia and Zimbabwe at different stages of malaria control and elimination. These three epidemiological settings had distinct serological profiles reflective of their malaria transmission histories. While there was little correlation between transmission intensity and antibody signals (magnitude or breadth) in adults, there was a clear correlation in children younger than 5 years of age. Antibodies in adults appeared to be durable even in the absence of significant recent transmission, whereas antibodies in children provided a more accurate picture of recent levels of transmission intensity. Seroprevalence studies in children could provide a valuable marker of progress toward malaria elimination. IMPORTANCE As malaria approaches elimination in many areas of the world, monitoring the effect of control measures becomes more important but challenging. Low-level infections may go undetected by conventional tests that depend on parasitemia, particularly in immune individuals, who typically show no symptoms of malaria. In contrast, antibodies persist after parasitemia and may provide a more accurate picture of recent exposure. Only a few parasite antigens—mainly vaccine candidates—have been evaluated in seroepidemiological studies. We examined antibody responses to 500 different malaria proteins in blood samples collected through community-based surveillance from areas with low, medium, and high malaria transmission intensities. The breadth of the antibody responses in adults was broad in all three settings and was a poor correlate of recent exposure. In contrast, children represented a better sentinel population for monitoring recent malaria transmission. These data will help inform the use of multiplex serology for malaria surveillance.
The burden of malaria has decreased dramatically within the past several years in parts of sub-Saharan Africa, following the scale-up of interventions supported by the Roll Back Malaria Partnership, the President’s Malaria Initiative and other partners. It is important to appreciate that the reductions in malaria have not been uniform between and within countries, with some areas experiencing resurgence instead. Furthermore, while interventions have greatly reduced the burden of malaria in many countries, it is also recognized that the malaria decline pre-dated widespread intervention efforts, at least in some cases where data are available. This raises more questions as what other factors may have been contributing to the reduction in malaria transmission and to what extent. The International Center of Excellence for Malaria Research (ICEMR) in Southern Africa aims to better understand the underlying malaria epidemiology, vector ecology and parasite genomics using three contrasting settings of malaria transmission in Zambia and Zimbabwe: an area of successful malaria control, an area of resurgent malaria and an area where interventions have not been effective. The Southern Africa ICEMR will capitalize on the opportunity to investigate the complexities of malaria transmission while adapting to intervention and establish the evidence-base to guide effective and sustainable malaria intervention strategies. Key approaches to attaining this goal for the region will include close collaboration with national malaria control programmes and contribution to capacity building at the individual, institutional and national levels.
Abstract. Sixty Plasmodium falciparum isolates, 20 each from Thailand, Zimbabwe, and Brazil, were characterized for 20 variant genetic markers, including the enzymes glucose phosphate isomerase, adenosine deaminase and peptidase, 11 other proteins detected by 2-dimensional electrophoresis (2D-P AGE), 2 merozoite surface antigens (MSA-l and MSA-2), one exported antigen (Exp-l), and sensitivity to the drugs chloroquine, pyrimethamine, and mefloquine. The study examines the extent of diversity betweenindividual isolates and the differences in the frequency of certain variants of the markers between the 3 countries. The principal conclusions to be drawn from the study are that there is extensive polymorphism in many of the genetically determined characters of this parasite, multiple infections with > 1 genetically distinct parasite are common, and there are geographical variations in the frequencies with which variant forms of certain markers occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.