Tamoxifen has been a mainstay of adjuvant therapy for breast cancer for many years. We sought to determine if genetic variability in the tamoxifen metabolic pathway influenced overall survival in breast cancer patients treated with tamoxifen. We examined functional polymorphisms in CYP2D6, the P450 catalyzing the formation of active tamoxifen metabolites, and UGT2B15, a Phase II enzyme facilitating the elimination of active metabolite in a retrospective study of breast cancer patients. We also examined whether the combination of variant alleles in SULT1A1 and UGT2B15 had more of an impact on overall survival in tamoxifen-treated patients than when the genes were examined separately. We conducted a retrospective study using archived paraffin blocks for DNA extraction and data from pathology reports and hospital tumor registry data for information on clinical characteristics, treatment, and outcomes (162 patients receiving tamoxifen and 175 who did not). Genotypes for CYP2D6 and UGT2B15 were obtained and Cox proportional hazards modeling was performed. After adjusting for age, race, stage of disease at diagnosis, and hormone receptor status, we found no significant association between CYP2D6 genotype and overall survival in either group of breast cancer patients. Tamoxifen-treated patients with UGT2B15 high activity genotypes had increased risk of recurrence and poorer survival. When UGT2B15 and SULT1A1 'at-risk' alleles were combined, women with two variant alleles had significantly greater risk of recurrence and poorer survival than those with common alleles. These studies indicate that genetic variation in Phase II conjugating enzymes can influence the efficacy of tamoxifen therapy for breast cancer.
Observed weak or null associations between fruit and vegetable intake and breast cancer risk could be due to heterogeneity in endogenous antioxidant capabilities. The authors evaluated potential relations between a functional polymorphism in catalase, an antioxidant enzyme, and breast cancer risk, particularly in relation to fruit and vegetable intake and supplement use. Women (1,008 cases and 1,056 controls) in the Long Island Breast Cancer Study Project (1996-1997) were interviewed, completed a food frequency questionnaire, and provided blood for genotyping. The high-activity catalase CC genotype was associated with an overall 17% reduction in risk of breast cancer compared with having at least one variant T allele (odds ratio = 0.83, 95% confidence interval: 0.69, 1.00). Vegetable and, particularly, fruit consumption contributed to the decreased risk associated with the catalase CC genotype. Associations were more pronounced among women who did not use vitamin supplements, with a significant multiplicative interaction (p(interaction) = 0.02) for the CC genotype and high fruit intake (odds ratio = 0.59, 95% confidence interval: 0.38, 0.89), and there was no association among supplement users. These results indicate the importance of diet, rather than supplement use, in concert with endogenous antioxidant capabilities, in the reduction of breast cancer risk. CC genotypes were prevalent in approximately 64% of controls; thus, the preventive potential for fruit consumption has widespread implications.
Sulfation of 4-OH TAM provides a previously unanticipated benefit, possibly due to alterations in the bioavailability of the active metabolite or to undefined estrogen receptor-mediated events. These data alternatively suggest that variability in the metabolism of tamoxifen may affect its efficacy.
Cytosolic sulfotransferases (SULTs) are phase II detoxification enzymes that are involved in the biotransformation of a wide variety of structurally diverse endo-and xenobiotics, including many therapeutic agents and endogenous steroids. Single-nucleotide polymorphisms (SNPs) in SULTs have functional consequences on the translated protein. For the most part, these SNPs are fairly uncommon in the population, but some, most notably for SULT isoform 1A1, are commonly found and have been associated with cancer risk for a variety of tumor sites and also with response to therapeutic agents. SNPs in the hydroxysteroid sulfotransferase, SULT2A1, have been identified in African-American subjects and influence the ratio of plasma DHEA:DHEA-S. This modification could potentially influence cancer risk in steroidogenic tissues. SNPs in many SULTs are ethnically distributed, another factor that could influence SULT pharmacogenetics. Finally, genetic variation has also been identified in 3 0 -phosphoadenoside 5 0 -phosphosulfate synthetase (PAPPS), the enzymes responsible for producing the obligatory cosubstrate for all sulfotransferases. Taken together, this variability could substantially influence the disposition of drugs metabolized by SULTs. Elucidation of the basis and effect of variability in sulfation could greatly impact individualized therapy in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.