Abstract. We describe cDNA clones for a cell surface proteoglycan that bears both heparan sulfate and chondroitin sulfate and that links the cytoskeleton to the interstitial matrix. The eDNA encodes a unique core protein of 32,868 D that contains several structural features consistent with its role as a glycosaminoglycan-containing matrix anchor. The sequence shows discrete cytoplasmic, transmembrane, and NH2-terminal extracellular domains, indicating that the molecule is a type I integral membrane protein. The cytoplasmic domain is small and similar in size but not in sequence to that of the/~-chain of various integrins. The extracellular domain contains a single dibasic sequence adjacent to the extracellular face of the transmembrane domain, potentially serving as the proteasesusceptible site involved in release of this domain from the cell surface. The extracellular domain contains two distinct types of putative glycosaminoglycan attachment sites; one type shows sequence characteristics of the sites previously described for chondroitin sulfate attachment (Bourdon, M. A., T. Krusius, S. Campbell, N. B. Schwartz, and E. Ruoslahti. 1987. Proc. Natl. Acad. Sci. USA. 84:3194-3198), but the other type has newly identified sequence characteristics that potentially correspond to heparan sulfate attachment sites. The single N-linked sugar recognition sequence is within the putative chondroitin sulfate attachment sequence, suggesting asparagine glycosylation as a mechanism for regulating chondroitin sulfate chain addition. Both 5' and 3' regions of this eDNA have sequences substantially identical to analogous regions of the human insulin receptor eDNA: a 99-bp region spanning the 5' untranslated and initial coding sequences is 67 % identical and a 35-bp region in the 3' untranslated region is 81% identical in sequence. mRNA expression is tissue specific; various epithelial tissues show the same two sizes of mRNA (2.6 and 3.4 kb); in the same relative abundance (3:1), the cerebrum shows a single 4.5-kb mRNA. This core protein eDNA describes a new class of molecule, an integral membrane proteoglycan, that we propose to name syndecan (from the Greek syndein, to bind together).
We have been interested in identifying proinflammatory molecules which might play a role in attracting monocytes and T cells to the kidney. Some of the new intercrines are potential candidates. In this report we have isolated cDNA encoding murine Rantes (MuRantes) from renal tubular epithelium (MCT cells). MuRantes is a 91 amino acid member of the -C-C- or intercrine beta subgroup of the Scy superfamily. The amino acid sequence for mature MuRantes was deduced from its coding cDNA and was found to be 90% homologous to its mature human counterpart (HuRantes). MCT epithelium expresses a single mRNA transcript for MuRantes of approximately 1100 bp. The MuRantes protein could be detected in cell lysates of MCT epithelium by western blotting and in the cytoplasm of MCT cells by immunofluorescence using a polyclonal antibody generated against HuRantes fusion protein. A search protocol using MuRantes-specific primers and cDNA amplification revealed that mRNAs for MuRantes are expressed additionally in syngeneic mesangial cells (MMC cells), whole kidney, liver, and spleen, as well as in nephritogenic antigen-specific CD4+ helper and CD8+ effector T cells. cDNA amplification studies also demonstrated a significant elevation in mRNA transcripts encoding MuRantes in response to the stimulation of MCT epithelium with TNF alpha and IL-1 alpha in culture, but not with TGF beta, gamma IFN, or IL-6. Our findings indicate that proximal tubular epithelium is an authentic source of MuRantes, and that transcripts encoding MuRantes are responsive to the modulating influence of paracrine factors having a known role in the development of parenchymal injury.
We have identified and cloned cDNA for a novel cell-surface protein that we have named Tactile for T cell activation, increased late expression. It is expressed on normal T cell lines and clones, and some transformed T cells, but no other cultured cell lines tested. It is expressed at low levels on peripheral T cells and is strongly up-regulated after activation, peaking 6 to 9 days after the activating stimulus. It is also up-regulated on NK cells activated in allogeneic cultures. It is not found on peripheral B cells but is expressed at very low levels on activated B cells. Tactile-specific mAb immunoprecipitates a band of 160 kDa when reduced and bands of 240, 180, and 160 kDa nonreduced. Using an antiserum produced with affinity-purified Tactile protein to screen a lambda gt11 library, we have identified Tactile cDNA. Northern blot analysis shows an expression pattern similar to that of the protein and transfection of COS cells with the full-length 5.2-kb cDNA results in cell-surface expression. Comparison with the sequence databanks show that Tactile is a member of the immunoglobulin gene superfamily, with similarity to Drosophila amalgam, the melanoma Ag MUC-18, members of the carcinoembryonic Ag family, the poliovirus receptor, and the neural cell adhesion molecule. The deduced primary sequence encodes a protein with three Ig domains, a long serine/threonine/proline-rich region typical of an extensively O-glycosylated domain, a transmembrane domain, and a 45 residue cytoplasmic domain. These data suggest that Tactile may be involved in adhesive interactions of activated T and NK cells during the late phase of the immune response.
Relatively little is known about the transcriptional control of genes expressed late after T cell activation. We have identified four genes expressed 3 to 5 days after T cell activation by alloantigen or mitogen. Here we report the genomic organization of 519, one of these late T cell activation Ag. Analysis of the genomic clone revealed that 519 consists of six exons. Ribonuclease protection experiments indicated that the most abundant transcript arising from this region is an alternatively spliced form of 519, referred to as 520, which lacks exon 2 and is similar in sequence to NKG5, a cDNA identified in NK cells. These experiments also revealed the existence of two other alternatively spliced RNA transcripts, with heterogeneity in exon 2. Primer extension analysis and ribonuclease protection assays demonstrated that there are two prominent start sites for transcription; however, there is no evidence for the NKG5 transcript in T cells, indicating that NKG5 may represent a NK cell-specific form of 520. The 5' flanking region of this gene contains several previously identified sequences involved in transcriptional regulation, as well as some potentially interesting novel conserved motifs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.