The intention of this Review is to highlight the use of coppermediated living radical polymerization as an efficient macromolecular engineering tool for the production of functional
Antimicrobial polymers have emerged as a potential solution to the growing problem of antimicrobial resistance. Although several studies have examined the effects of various parameters on the antimicrobial and hemolytic activity of statistical copolymers, there are still numerous parameters to be explored. Therefore, in this study, we developed a library of 36 statistical amphiphilic ternary copolymers prepared via photoinduced electron transfer-reversible addition−fragmentation chain transfer polymerization to systematically evaluate the influence of hydrophobic groups [number of carbons (5, 7, and 9)] and chain type of the hydrophobic monomer (cyclic, aromatic, linear, or branched), monomer ratio, and degree of polymerization (DP n ) on antimicrobial and hemolytic activity. To guide our synthetic strategy, we developed a pre-experimental screening approach using C log P values of oligomer models, which correspond to the logarithm of the partition coefficient of compounds between n-octanol and water. This method enabled correlation of polymer hydrophobicity with antimicrobial and hemolytic activity. In addition, this study revealed that minimizing hydrophobicity and hydrophobic content were key factors in controlling hemolysis, whereas optimizing antimicrobial activity was more complex. High antimicrobial activity required hydrophobicity (i.e., C log P, hydrophobicity index) that was neither too high nor too low, an appropriate cationic/hydrophobic balance, and structural compatibility between the chosen monomers. Furthermore, these findings could guide the design of future antimicrobial ternary copolymers and suggest that C log P values between 0 and 2 have the best balance of high antimicrobial activity and low hemolytic activity.
Combinatorial and high throughput (HTP) methodologies have long been used by the pharmaceutical industry to accelerate the rate of drug discovery. HTP techniques can also be applied in polymer chemistry to more efficiently elucidate structure−property relationships, to increase the speed of new material development, and to rapidly optimize polymerization conditions. Controlled living/radical polymerization (CLRP) is widely employed in the preparation of potential materials for bioapplications being suitable for a large variety of polymeric materials with various architectures. The versatility of CLRP makes it an ideal candidate for combinatorial and HTP approaches to research, and recently, the development of oxygen tolerant CLRP techniques has greatly simplified the methodology. In this Perspective, we provide an overview of conventional CLRP, including automated parallel synthesizers, as well as oxygen tolerant CLRP applications for HTP polymer research.
A review of key macromolecular systems employed to stabilise polyphenols, including direct polymerisation of polyphenol monomers and conjugation with macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.