Prepubertal exposure to soy or its biologically active component genistein reduces later breast cancer risk in both animal models and human populations. We investigated whether that might be due to reported estrogenic properties of genistein. Our study indicated that daily prepubertal exposures between postnatal days 7 and 20 to 10 microg 17beta-estradiol (E2) reduced later risk of developing 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumors. Assessment of mammary gland morphology revealed that both prepubertal E2 and genistein (50 microg daily) exposures reduced the size of mammary epithelial area and number of terminal end buds (TEBs) and increased the density of lobulo-alveolar structures, suggesting that these exposures induced elimination of targets for malignant transformation by differentiation. Next, the mechanisms mediating the protective effects of E2 and genistein were investigated. E2 is shown to up-regulate BRCA1, a tumor suppressor gene that participates in DNA damage repair processes and cell differentiation and that down-regulates the activity of estrogen receptor (ER)-alpha. The expression of BRCA1 mRNA was up-regulated in the mammary glands of rats exposed to E2 or genistein during prepuberty, when determined at the ages of 3, 8 and 16 weeks. Prepubertal E2 exposure reduced ER-alpha levels in the mammary gland, while prepubertal genistein exposure had an opposite effect. Our results suggest that prepubertal estrogenic exposures may reduce later breast cancer risk by inducing a persistent up-regulation of BRCA1 in the mammary gland.
To determine whether dietary fat intake during childhood affects the later risk of developing breast cancer, we fed prepubertal rats between post-natal days 5 and 25 a low (16% energy) or high-fat (39% energy) diet composed mainly of n-6 or n-3 polyunsaturated fatty acids (PUFAs) originating either from corn oil or menhaden oil, respectively, in the ratios of 16-17:1 (n-6 PUFA diets) or 2-3:1 (n-3 PUFA diets). We also examined whether changes in risk are associated with perturbations in biological processes previously linked to fatty acid intake and breast cancer. Mammary tumorigenesis was induced by treating 50-day-old rats with the carcinogen 7,12-dimethylbenz[a]anthracene. When compared with the reference low-fat n-6 PUFA diet, prepubertal exposure to the low-fat n-3 PUFA diet decreased, whereas a high-fat n-3 PUFA diet increased mammary tumor incidence; the high-fat n-6 PUFA diet had no effect. Both the low and high-fat n-3 PUFA diets induced mammary epithelial differentiation by reducing the number of terminal end buds (TEBs) and increasing the presence of lobulo-alveolar structures. They also increased lipid peroxidation and reduced cyclooxygenase-2 activity. Prepubertal exposure to the low-fat n-3 PUFA diet increased apoptosis, determined using TUNEL assay, and reduced cell proliferation, determined using PCNA staining. In marked contrast, prepubertal exposure to the high-fat n-3 PUFA diet induced cell proliferation and inhibited apoptosis in the TEBs and lobular structures. The latter is consistent with the finding that pAkt, a survival factor that inhibits apoptosis, was elevated in their mammary glands. In summary, although prepubertal exposure to a low-fat n-3 PUFA diet reduced later mammary tumorigenesis in rats, high levels of this fatty acid can have adverse effects on the prepubertal mammary gland and increase subsequent breast cancer risk.
This study examines whether the serine/threonine protein kinase, Akt, is involved in the cross-talk between epidermal growth factor (EGF) and insulin-related growth factor I (IGF-I) receptors and ER-alpha. Treatment of MCF-7 cells with either EGF or IGF-I resulted in a rapid phosphorylation of Akt and a 14- to 16-fold increase in Akt activity, respectively. Akt activation was blocked by inhibitors of phosphatidylinositol 3-kinase, but not by an inhibitor of the ribosomal protein kinase p70S6K. Stable transfection of cells with a dominant negative Akt mutant blocked the effects of EGF and IGF-I on ER-alpha expression and activity, whereas stable transfection of cells with a constitutively active Akt mutant mimicked the effects of EGF and IGF-I. In the latter cells, there was a decrease in the amount of ER-alpha protein and messenger RNA (70-80%) and an increase in the amount of progesterone receptor protein, messenger RNA (4- to 9- and by 3.5- to 7-fold, respectively) and pS2 (3- to 5-fold). Coexpression of wild-type ER-alpha and the dominant negative Akt mutant in COS-1 cells also blocked the growth factor-stimulated activation of ER-alpha, but coexpression of the wild-type receptor with the constitutively active Akt mutant increased ER-alpha activity. Receptor activation was blocked by an antiestrogen. Studies using mutants of ER-alpha demonstrated that Akt increased estrogen receptor activity through the amino-terminal activation function-1 (AF-1). Serines S104 S106, S118, and S167 appear to play a role in the activation of ER-alpha by Akt.
At present, we do not know what causes sporadic breast cancer. Environmental factors,particularly diet, appear to explain at least 70% of newly diagnosed breast cancers, but it is not clear what these factors are. We propose that the lack of progress in this area is due to a lack of considering the effect of timing of environmental and dietary exposures on the breast. The evidence provided above suggests that an in utero exposure to an estrogenic environment-including that caused by diet [high (n-6) PUFA or genistein]-increases breast cancer risk. This increase may be mediated by an increased presence of TEB in the mammary epithelial tree and increased ER-alpha levels, reduced ER-beta levels or both. Prepubertal estrogenic exposure, in contrast, reduces later risk of developing breast cancer. The protective effect of estrogens may be mediated by early epithelial differentiation, reduced presence of ER-alpha and increased levels of ER-beta in the mammary gland. The challenge we are now facing is to determine whether the data obtained mainly through the use of animal models is relevant to women and if so, how we might be able to modulate pregnancy and childhood estrogenic exposure by appropriate dietary modifications to reduce breast cancer risk in women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.