Variability in quantitative gait data arises from many potential sources, including natural temporal dynamics of neuromotor control, pathologies of the neurological or musculoskeletal systems, the effects of aging, as well as variations in the external environment, assistive devices, instrumentation or data collection methodologies. In light of this variability, unidimensional, cycle-based gait variables such as stride period should be viewed as random variables and prototypical single-cycle kinematic or kinetic curves ought to be considered as random functions of time. Within this framework, we exemplify some practical solutions to a number of commonly encountered analytical challenges in dealing with gait variability. On the topic of univariate gait variables, robust estimation is proposed as a means of coping with contaminated gait data, and the summary of nonnormally distributed gait data is demonstrated by way of empirical examples. On the summary of gait curves, we discuss methods to manage undesirable phase variation and non-robust spread estimates. To overcome the limitations of conventional comparisons among curve landmarks or parameters, we propose as a viable alternative, the combination of curve registration, robust estimation, and formal statistical testing of curves as coherent units. On the basis of these discussions, we provide heuristic guidelines for the summary of gait variables and the comparison of gait curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.