A cell line has been derived from a human prostatic carcinoma xenograft, CWR22R. This represents one of very few available cell lines representative of this disease. The cell line is derived from a xenograft that was serially propagated in mice after castration-induced regression and relapse of the parental, androgen-dependent CWR22 xenograft. Flow cytometric and cytogenetic analysis showed that this cell line represents one hyper DNA-diploid stem line with two clonal, evolved cytogenetic sublines. The basic karyotype is close to that of the grandparent xenograft, CWR22, and is relatively simple with 50 chromosomes. In nude mice, the line forms tumors with morphology similar to that of the xenografts, and like the parental CWR22 and CWR22R xenografts, this cell line expresses prostate specific antigen. Growth is weakly stimulated by dihydroxytestosterone and lysates are immunoreactive with androgen receptor antibody by Western blot analysis. Growth is stimulated by epidermal growth factor but is not inhibited by transforming growth factor-beta1.
Aberrant nuclear factor-kappaB (NF-kappaB) activation has been implicated in the pathogenesis of several human malignancies. In this study, we determined whether NF-kappaB is constitutively activated in human prostate adenocarcinoma, and, if so, whether increased NF-kappaB activation and its binding to DNA influence tumor progression. Using tissue samples obtained during transurethral prostatic resection and paraffin-embedded sections of benign and cancer specimens, we determined the nuclear expression of NF-kappaB/p65 and NF-kappaB/p50, cytoplasmic expression of IkappaBalpha, its phosphorylation, and expression of NF-kappaB-regulated genes, specifically Bcl2, cyclin D1, matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor (VEGF). A progressive increase in the expression of NF-kappaB/p65 (but not of p50) was observed in cancer specimens compared to benign tissue, which correlated with increasing levels of IkappaBalpha and its phosphorylation. NF-kappaB DNA-binding activity increased with increasing tumor grade and the binding complex mainly consisted of NF-kappaB/p65-p50 heterodimers. Immunohistochemical analysis showed enhanced nuclear staining for NF-kappaB/p65 in both high-grade (P <.0001) and low-grade (P <.003) cancer specimens, compared to benign tissue. The nuclear levels of NF-kappaB/p65 correlated with concurrent increase in cytosolic levels of IkappaBalpha along with NF-kappaB-dependent expression of Bcl2, cyclin D1, MMP-9, and VEGF. These results demonstrate that NF-kappaB/p65 is constitutively activated in human prostate adenocarcinoma and is related to tumor progression due to transcriptional regulation of NF-kappaB-responsive genes.
Differential expression pattern of P I3 K-Akt, NF-kappaB and I kappaB during prostate cancer progression in TRAMP mice suggest that these molecules represent potential molecular targets for prevention and/or therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.