Background Effective rehabilitative therapies are needed for patients with long-term deficits after stroke. Methods In this multicenter, randomized, controlled trial involving 127 patients with moderate-to-severe upper-limb impairment 6 months or more after a stroke, we randomly assigned 49 patients to receive intensive robot-assisted therapy, 50 to receive intensive comparison therapy, and 28 to receive usual care. Therapy consisted of 36 1-hour sessions over a period of 12 weeks. The primary outcome was a change in motor function, as measured on the Fugl-Meyer Assessment of Sensorimotor Recovery after Stroke, at 12 weeks. Secondary outcomes were scores on the Wolf Motor Function Test and the Stroke Impact Scale. Secondary analyses assessed the treatment effect at 36 weeks. Results At 12 weeks, the mean Fugl-Meyer score for patients receiving robot-assisted therapy was better than that for patients receiving usual care (difference, 2.17 points; 95% confidence interval [CI], −0.23 to 4.58) and worse than that for patients receiving intensive comparison therapy (difference, −0.14 points; 95% CI, −2.94 to 2.65), but the differences were not significant. The results on the Stroke Impact Scale were significantly better for patients receiving robot-assisted therapy than for those receiving usual care (difference, 7.64 points; 95% CI, 2.03 to 13.24). No other treatment comparisons were significant at 12 weeks. Secondary analyses showed that at 36 weeks, robot-assisted therapy significantly improved the Fugl-Meyer score (difference, 2.88 points; 95% CI, 0.57 to 5.18) and the time on the Wolf Motor Function Test (difference, −8.10 seconds; 95% CI, −13.61 to −2.60) as compared with usual care but not with intensive therapy. No serious adverse events were reported. Conclusions In patients with long-term upper-limb deficits after stroke, robot-assisted therapy did not significantly improve motor function at 12 weeks, as compared with usual care or intensive therapy. In secondary analyses, robot-assisted therapy improved outcomes over 36 weeks as compared with usual care but not with intensive therapy. (ClinicalTrials.gov number, NCT00372411.)
Objective To quantitatively define levels of upper extremity movement impairment using cluster analysis of Fugl-Meyer upper extremity (FM-UE) with and without reflex items. Design Secondary analysis of FM-UE individual item scores compiled from baseline testing of 5 studies with consistent testing procedures. Setting University and VA research centers. Participants: Individuals (N=−247) with chronic stroke (>6 months post-stroke). Interventions Not applicable. Main Outcome Measures Cut-off scores defined by total FM-UE scores of clusters identified by two hierarchical cluster analyses run on full sample of FM-UE individual item scores (with/without reflexes). Patterns of motor function defined by aggregate item scores of clusters. Results FM-UE scores ranged from 2–63 (mean=26.9±15.7) with reflex items and 0–57 (mean=22.1 ±15.3) without reflex items. Three clusters were identified. The distributions of the FM-UE scores revealed considerable overlap between the clusters, therefore four distinct stroke impairment levels were also derived. Conclusions For chronic stroke, the cluster analyses of the upper extremity FM support either a three or a four impairment level classification scheme.
Objectives To determine the efficacy of 2 distinct 6-week robot-assisted reaching programs compared with an intensive conventional arm exercise program (ICAE) for chronic, stroke-related upper-extremity (UE) impairment. To examine whether the addition of robot-assisted training out of the horizontal plane leads to improved outcomes. Design Randomized controlled trial, single-blinded, with 12-week follow-up. Setting Research setting in a large medical center. Participants Adults (N=62) with chronic, stroke-related arm weakness stratified by impairment severity using baseline UE motor assessments. Interventions Sixty minutes, 3 times a week for 6 weeks of robot-assisted planar reaching (gravity compensated), combined planar with vertical robot-assisted reaching, or intensive conventional arm exercise program. Main Outcome Measure UE Fugl-Meyer Assessment (FMA) mean change from baseline to final training. Results All groups showed modest gains in the FMA from baseline to final with no significant between group differences. Most change occurred in the planar robot group (mean change ± SD, 2.94± 0.77; 95% confidence interval [CI], 1.40 – 4.47). Participants with greater motor impairment (n=41) demonstrated a larger difference in response (mean change ± SD, 2.29±0.72; 95% CI, 0.85–3.72) for planar robot-assisted exercise compared with the intensive conventional arm exercise program (mean change ± SD, 0.43±0.72; 95% CI, −1.00 to 1.86). Conclusions Chronic UE deficits because of stroke are responsive to intensive motor task training. However, training outside the horizontal plane in a gravity present environment using a combination of vertical with planar robots was not superior to training with the planar robot alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.