Millions of people regularly obtain insufficient sleep1. Given the impact of sleep deprivation on our lives, understanding the cellular and molecular pathways affected by sleep deprivation is clearly of social and clinical importance. One of the major effects of sleep deprivation on the brain is to produce memory deficits in learning paradigms that are dependent on the hippocampus2–5. In this study, we have identified a molecular mechanism by which brief sleep deprivation alters hippocampal function. Sleep deprivation selectively impaired cAMP/PKA-dependent forms of synaptic plasticity6 in the hippocampus, reduced cAMP signaling, and increased activity and protein levels of phosphodiesterase-4 (PDE4), an enzyme that degrades cAMP. Treatment with PDE inhibitors rescued the sleep deprivation-induced deficits in cAMP signaling, synaptic plasticity, and hippocampus-dependent memory. These findings demonstrate that brief sleep deprivation disrupts hippocampal function by interfering with cAMP signaling through increased PDE4 activity. Thus drugs that enhance cAMP signaling may provide a novel therapeutic approach to counteract the cognitive effects of sleep deprivation.
Synaptic plasticity is a key mechanism for chronic pain. It occurs at different levels of the central nervous system, including spinal cord and cortex. Studies have mainly focused on signaling proteins that trigger these plastic changes, whereas few have addressed the maintenance of plastic changes related to chronic pain. We found that protein kinase M zeta (PKMζ) maintains pain-induced persistent changes in the mouse anterior cingulate cortex (ACC). Peripheral nerve injury caused activation of PKMζ in the ACC, and inhibiting PKMζ by a selective inhibitor, ζ-pseudosubstrate inhibitory peptide (ZIP), erased synaptic potentiation. Microinjection of ZIP into the ACC blocked behavioral sensitization. These results suggest that PKMζ in the ACC acts to maintain neuropathic pain. PKMζ could thus be a new therapeutic target for treating chronic pain.
Extraordinary Asian American educational achievement has often been credited to a common cultural influence of Confucianism that emphasizes education, family honor, discipline, and respect for authority. In this article, Min Zhou and Susan Kim argue that immigration selectivity, higher than average levels of premigration and postmigration socioeconomic status, and ethnic social structures interact to create unique patterns of adaptation and social environments conducive to educational achievement. This article seeks to unpack the ethnic effect through a comparative analysis of the ethnic system of supplementary education that has developed in two immigrant communities — Chinese and Korean — in the United States. The study suggests that the cultural attributes of a group interact substantially with structural factors, particularly tangible ethnic social structures on which community forces are sustained and social capital is formed. The authors conclude that "culture" is not static and requires structural support to constantly adapt to new situations.
Neuropathic pain is caused by a primary lesion or dysfunction in the nervous system. Investigations have mainly focused on the spinal mechanisms of neuropathic pain, and less is known about cortical changes in neuropathic pain. Here, we report that peripheral nerve injury triggered long-term changes in excitatory synaptic transmission in layer II/III neurons within the anterior cingulate cortex (ACC). Both the presynaptic release probability of glutamate and postsynaptic glutamate AMPA receptor-mediated responses were enhanced after injury using the mouse peripheral nerve injury model. Western blot showed upregulated phosphorylation of GluR1 in the ACC after nerve injury. Finally, we found that both presynaptic and postsynaptic changes after nerve injury were absent in genetic mice lacking calcium-stimulated adenylyl cyclase 1 (AC1). Our studies therefore provide direct integrative evidence for both long-term presynaptic and postsynaptic changes in cortical synapses after nerve injury, and that AC1 is critical for such long-term changes. AC1 thus may serve as a potential therapeutic target for treating neuropathic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.