The cold air test program was completed on the SSME (Space Shuttle Main Engine) HPFTP (High Pressure Fuel Turbopump) turbine with production nozzle vane rings and polished coated rotor blades with a smooth surface finish of 30 microinch (0.76 micrometer) RMS (Root Mean Square). The smooth blades were polished by an abrasive flow machining process. The test results were compared with the air test results from production rough coated rotor blades with a surface finish of up to 400 microinch (10.16 micrometer) RMS. Turbine efficiency was higher for the smooth blades over the entire range tested. Efficiency increased 2.1 percentage points at the SSME 104 percent RPL (Rated Power Level) condition. This efficiency improvement could reduce the SSME HPFTP turbine inlet temperature by 57 degrees Rankine (32 degrees Kelvin) increasing turbine durability. The turbine flow parameter increased and the mid-span outlet swirl angle became more axial with the smooth rotor blades.
In order to experimentally determine the performance of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine, a "cold" air flow turbine test program was established at NASA's Marshall Space Flight Center. As part of this test program, a baseline test of Rocketdyne's HPFTP turbine has been completed. The turbine performance and turbine diagnostics such as airfoil surface static pressure distributions, static pressure drops through the turbine, and exit swirl angles were investigated at the turbine design point, over its operating range, and at extreme off-design points. The data was compared to pretest predictions with good results. The test data has been used to improve meanline prediction codes and is now being used to validate various threedimensional codes. The data will also be scaled to engine conditions and used to improve the SSME steady-state performance model. v Nomenclature
The National Aeronautics and Space Administration’s (NASA’s) Marshall Space Flight Center (MSFC) has established a “cold” airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the space shuttle main engine (SSME) alternate turbopump development (ATD) fuel turbine was conducted for “back-to-back” comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.