An exploratory study on a novel fiber ringdown pressure sensor is presented. With this technique, pressure measurements are achieved in a time domain by measurement of ringdown times. The proof-of-concept device consists of a diode laser light source, two 2 x 1 fiber couplers, a section of fused-silica single-mode fiber, a photodetector, and an electronic control. The sensor's performance in the areas of stability, repeatability, and dynamic range is explored. The results demonstrate the new concept of fiber pressure sensors and the technical feasibility of developing a new generation of fiber sensors for pressure measurements.
A new method of developing optical fiber pressure sensors by use of a fiber loop ringdown scheme is described. The fiber loop ringdown system is characterized in terms of the ringdown baseline stability, fiber transmission loss, and fiber refractive index. The overall sensor performance is demonstrated by use of sensing forces applied to the sensor head. The current device can sense pressures in the range of 0 to 9.8 x 10(6) Pa, converted approximately from the applied forces. The sensor's linear response, repeatability, detection sensitivity, measuring dynamic range, and temperature tolerance are explored.
We report a study on the cavity ringdown spectroscopy of acetone in both the ultraviolet (UV) and the near-infrared (NIR) spectral regions to explore the potential for development of a breath analyzer for disease diagnostics. The ringdown spectrum of acetone in the UV (282.4-285.0 nm) region is recorded and the spectrum is in good agreement with those obtained by other spectral techniques reported in the literature. The absorption cross-section of the C-H stretching overtone of acetone in the NIR (1632.7-1672.2 nm) is reported for the first time and the maximum absorption cross-section located at 1666.7 nm is 1.2 x 10(-21) cm(2). A novel, compact, atmospheric cavity with a cavity length of 10 cm has been constructed and implemented to investigate the technical feasibility of the potential instrument size, optical configuration, and detection sensitivity. The detection limit of such a mini cavity employing ringdown mirrors of reflectivity of 99.85% at 266 nm, where acetone has the strongest absorption, is approximately 1.5 ppmv based on the standard 3 criteria. No real breath gas samples are used in the present study. Discussions on the detection sensitivity and background spectral interferences for the instrument development are presented. This study demonstrates the potential of developing a portable, sensitive breath analyzer for medical applications using the cavity ringdown spectral technique.
We have been exploring innovative technologies for elemental and hyperfine structure measurements using cavity ring-down spectroscopy (CRDS) combined with various plasma sources. A laboratory CRDS system utilizing a tunable dye laser is employed in this work to demonstrate the feasibility of the technology. An in-house fabricated sampling system is used to generate aerosols from solution samples and introduce the aerosols into the plasma source. The ring-down signals are monitored using a photomultiplier tube and recorded using a digital oscilloscope interfaced to a computer. Several microwave plasma discharge devices are tested for mercury CRDS measurement. Various discharge tubes have been designed and tested to reduce background interference and increase the sample path length while still controlling turbulence generated from the plasma gas flow. Significant background reduction has been achieved with the implementation of the newly designed tube-shaped plasma devices, which has resulted in a detection limit of 0.4 ng/mL for mercury with the plasma source CRDS. The calibration curves obtained in this work readily show that linearity over 2 orders of magnitude can be obtained with plasma-CRDS for mercury detection. In this work, the hyperfine structure of mercury at the experimental plasma temperatures is clearly identified. We expect that plasma source cavity ring-down spectroscopy will provide enhanced capabilities for elemental and isotopic measurements.
Recent studies combining an atmospheric-pressure plasma source ͑inductively coupled plasma or microwave induced plasma͒ with cavity ringdown spectroscopy ͑plasma-CRDS͒ have indicated significant promise for ultra-sensitive elemental measurements. Initial plasma-CRDS efforts employed an inductively coupled plasma as the atomization source and a pulsed laser system as the light source. In an effort to improve the portability and reduce the cost of the system for application purposes, we have modified our approach to include a compact microwave induced plasma and a continuous wave diode laser. A technique for controlling the coupling of the continuous wave laser to the ringdown cavity has been implemented using a standard power combiner. No acouto-optic modulator or cavity modulation is required. To test the system performance, diluted standard solutions of strontium ͑Sr͒ were introduced into the plasma by an in-house fabricated sampling device combined with an ultrasonic nebulizer. SrOH radicals were generated in the plasma and detected using both a pulsed laser system and a diode laser via a narrow band transition near 680 nm. The experimental results obtained using both light sources are compared and used for system characterization. The ringdown baseline noise and the detection limit for Sr are determined for the current experimental configuration. The results indicate that a plasma-CRDS instrument constructed using diode lasers and a compact microwave induced plasma can serve as a small, portable, and sensitive analytical tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.