SummaryThe retinoic acid (RA)- and β-catenin-signaling pathways regulate limb bud induction and initiation; however, their mechanisms of action are not understood and have been disputed. We demonstrate that both pathways are essential and that RA and β-catenin/TCF/LEF signaling act cooperatively with Hox gene inputs to directly regulate Tbx5 expression. Furthermore, in contrast to previous models, we show that Tbx5 and Tbx4 expression in forelimb and hindlimb, respectively, are not sufficient for limb outgrowth and that input from RA is required. Collectively, our data indicate that RA signaling and Tbx genes act in a coherent feed-forward loop to regulate Fgf10 expression and, as a result, establish a positive feedback loop of FGF signaling between the limb mesenchyme and ectoderm. Our results incorporate RA-, β-catenin/TCF/LEF-, and FGF-signaling pathways into a regulatory network acting to recruit cells of the embryo flank to become limb precursors.
Highlights d Characterization of the events that prefigure the formation of individual muscle bundles d Direct demonstration of the role of connective tissue cells in muscle morphogenesis d Identification of markers of limb irregular connective tissue (ICT)
The size, shape and insertion sites of muscles enable them to carry out their precise functions in moving and supporting the skeleton. Although forelimb anatomy is well described, much less is known about the embryonic events that ensure individual muscles reach their mature form. A description of human forelimb muscle development is needed to understand the events that control normal muscle formation and to identify what events are disrupted in congenital abnormalities in which muscles fail to form normally.We provide a novel, 4D anatomical characterisation of the developing human upper limb muscles between Carnegie Stage 18-22 using Optical Projection Tomography. We show muscles develop in a progressive wave, proximal to distal and superficial to deep. We show some muscle bundles undergo splitting events to form individual muscles, while others translocate to reach their correct position within the forelimb. Finally, we show palmaris longus fails to form from early in development. Our study reveals the timings of, and suggests mechanisms for, critical events that enable nascent muscle bundles to reach their mature form and position within the human forelimb.
Retinoic acid was locally applied to presumptive limb regions of chick embryos to find out the earliest time at which the limb pattern can be reprogrammed. When beads soaked in retinoic acid were placed in the appropriate positions in embryos at stage 10 or older, duplicated or reduced leg patterns resulted. To pin point the time at which the cells in the limb rudiment respond to the retinoid, beads were removed at various times and the lengths of exposure required to reprogramme limb development found. The early limb rudiments require longer exposures to give duplications than late rudiments. The effective treatment periods last at least until stage 17 when the limb bud and apical ectodermal ridge develop. In contrast, the length of exposure to reduce the limb is constant at early stages. Retinoids first start acting to produce duplicated structures between stages 10 and 13. Therefore, retinoids appear to begin to reprogramme the cells as soon as they are determined to give rise to a limb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.