Trehalose is a natural glucose disaccharide identified in the 19th century in fungi and insect cocoons, and later across the three domains of life. In members of the genus Mycobacterium, which includes the tuberculosis (TB) pathogen and over 160 species of nontuberculous mycobacteria (NTM), many of which are opportunistic pathogens, trehalose has been an important focus of research over the last 60 years. It is a crucial player in the assembly and architecture of the remarkable mycobacterial cell envelope as an element of unique highly antigenic glycolipids, namely trehalose dimycolate ('cord factor'). Free trehalose has been detected in the mycobacterial cytoplasm and occasionally in oligosaccharides with unknown function. TB and NTM infection statistics and death toll, the decline in immune responses in the aging population, human immunodeficiency virus/AIDS or other debilitating conditions, and the proliferation of strains with different levels of resistance to the dated drugs in use, all merge into a serious public-health threat urging more effective vaccines, efficient diagnostic tools and new drugs. This review deals with the latest findings on mycobacterial trehalose biosynthesis, catabolism, processing and recycling, as well with the ongoing quest for novel trehalose-related mechanisms to be targeted by novel TB therapeutics. In this context, the drug-discovery pipeline has recently included new lead compounds directed toward trehalose-related targets highlighting the potential of these pathways to stem the tide of rising drug resistance.
Strains of) was cloned from a gene library. The sequences of the three genes (including treS) were amplified by PCR and sequenced, revealing that the genes were structurally linked. To understand the role of trehalose during salt stress in T. thermophilus RQ-1, we constructed a mutant, designated RQ-1M6, in which TPS (otsA) and TPP (otsB) genes were disrupted by gene replacement. Mutant RQ-1M6 accumulated trehalose and mannosylglycerate in a medium containing yeast extract and NaCl. However, growth in a defined medium (without yeast extract, known to contain trehalose) containing NaCl led to the accumulation of mannosylglycerate but not trehalose. The deletion of otsA and otsB reduced the ability to grow in defined salt-containing medium, with the maximum salinity being 5% NaCl for RQ-1 and 3% NaCl for RQ-1M6. The lower salt tolerance observed in the mutant was relieved by the addition of trehalose to the growth media. In contrast to trehalose, the addition of glycine betaine, mannosylglycerate, maltose, and glucose to the growth medium did not allow the mutant to grow at higher salinities. The results presented here provide crucial evidence for the importance of the TPS/TPP pathway for the synthesis and accumulation of trehalose and the decisive contribution of this disaccharide to osmotic adaptation in T. thermophilus RQ-1.Thermophilic organisms, like the vast majority of other microorganisms, accumulate compatible solutes in response to water stress imposed by salt. However, the compatible solutes of thermophilic and hyperthermophilic prokaryotes are generally different from those of their mesophilic counterparts (34), and some compatible solutes, namely, di-myo-inositolphosphate, di-mannosyl-di-myo-inositol-phosphate, diglycerol phosphate, and mannosylglyceramide, are confined to organisms that grow at extremely high temperatures. Mannosylglycerate is also a common compatible solute of thermophiles and hyperthermophiles (21,28,35). Despite this association with organisms that grow at extremely high temperatures, mannosylglycerate was initially identified in red algae of the order Ceramiales (4, 15). Trehalose, a canonical compatible solute of mesophiles, also accumulates in a few thermophilic and hyperthermophilic organisms, where it appears to serve as a compatible solute (18,21,35). This nonreducing disaccharide has also been implicated in several stress responses in prokaryotes and eukaryotic microorganisms (10,32,36,37) and also serves as an intermediate in the synthesis of glycolipids, sulfolipids, and lipooligosaccharides in mycobacteria (3).The most common pathway for the synthesis of trehalose in bacteria involves trehalose-phosphate synthase (TPS), encoded by the gene otsA, which converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. This intermediate is subsequently dephosphorylated to yield trehalose via a specific trehalose-6-phosphate phosphatase (TPP), encoded by otsB (12). Another pathway converts maltose to trehalose via a trehalose synthase encoded by treS. The species of the...
Mycobacteria synthesize intracellular methylglucose lipopolysaccharides (MGLP) proposed to regulate fatty acid synthesis. Although their structures have been elucidated, the identity of most biosynthetic genes remains unknown. The first step in MGLP biosynthesis is catalyzed by a glucosyl-3-phosphoglycerate synthase (GpgS, Rv1208 in Mycobacterium tuberculosis H37Rv). However, a typical glucosyl-3-phosphoglycerate phosphatase (GpgP, EC3.1.3.70) for dephosphorylation of glucosyl-3-phosphoglycerate to glucosylglycerate, was absent from mycobacterial genomes. We purified the native GpgP from Mycobacterium vanbaalenii and identified the corresponding gene deduced from amino acid sequences by mass spectrometry. The M. tuberculosis ortholog (Rv2419c), annotated as a putative phosphoglycerate mutase (PGM, EC5.4.2.1), was expressed and functionally characterized as a new GpgP. Regardless of the high specificity for glucosyl-3-phosphoglycerate, the mycobacterial GpgP is not a sequence homolog of known isofunctional GpgPs. The assignment of a new function in M. tuberculosis genome expands our understanding of this organism's genetic repertoire and of the early events in MGLP biosynthesis.
Mycobacterial pathogenesis is closely associated with a unique cell envelope rich in complex carbohydrates and unique lipids, among which are the mycolic acids. Mycobacteria also synthesize unique intracellular polymethylated polysaccharides (PMPSs), namely methylglucose lipopolysaccharides (MGLPs), which are acylated with short-chain fatty acids, and methylmannose polysaccharides (MMPs). Since PMPSs modulate the synthesis of long-chain fatty acids in vitro, the possibility of a similar role in vivo and the regulation of mycolic acids assembly have been anticipated. Unlike MGLPs, MMPs have been identified in M. smegmatis and other fast-growing mycobacteria but not in M. tuberculosis, implying an essential role for MGLPs in this pathogen and turning the biosynthetic enzymes into attractive drug targets. The genome of M. tuberculosis was decoded 14 years ago but only recently has the identity of the genes involved in MGLPs biosynthesis been investigated. Two gene clusters (Rv1208-Rv1213 and Rv3030-Rv3037c) containing a few genes considered to be essential for M. tuberculosis growth, have initially been proposed to coordinate MGLPs biosynthesis. Among these genes, only the product of Rv1208 for the first step in the MGLPs pathway has, so far, been crystallized and its three-dimensional structure been determined. However, recent results indicate that at least three additional clusters may be involved in this pathway. The functional assignment of authentic roles to some of these M. tuberculosis H37Rv genes sheds new light on the intricacy of MGLPs biogenesis and renewed interest on their biological role.
Trehalose is the primary organic solute inRubrobacter xylanophilus under all conditions tested, including those for optimal growth. We detected genes of four different pathways for trehalose synthesis in the genome of this organism, namely, the trehalose-6-phosphate synthase (Tps)/trehalose-6-phosphate phosphatase (Tpp), TreS, TreY/TreZ, and TreT pathways. Moreover, R. xylanophilus is the only known member of the phylum Actinobacteria to harbor TreT. The Tps sequence is typically bacterial, but the Tpp sequence is closely related to eukaryotic counterparts. Both the Tps/Tpp and the TreT pathways were active in vivo, while the TreS and the TreY/TreZ pathways were not active under the growth conditions tested and appear not to contribute to the levels of trehalose observed. The genes from the active pathways were functionally expressed in Escherichia coli, and Tps was found to be highly specific for GDP-glucose, a rare feature among these enzymes. The trehalose-6-phosphate formed was specifically dephosphorylated to trehalose by Tpp. The recombinant TreT synthesized trehalose from different nucleoside diphosphate-glucose donors and glucose, but the activity in R. xylanophilus cell extracts was specific for ADP-glucose. The TreT could also catalyze trehalose hydrolysis in the presence of ADP, but with a very high K m . Here, we functionally characterize two systems for the synthesis of trehalose in R. xylanophilus, a representative of an ancient lineage of the actinobacteria, and discuss a possible scenario for the exceptional occurrence of treT in this extremophilic bacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.