Autoimmune diseases (AIDs) are characterized by a multifactorial aetiology and a complex genetic background, with the MHC region playing a major role. We genotyped for HLA-DRB1 locus 1228 patients with AIDs-213 with Systemic Lupus Erythematosus (SLE), 166 with Psoriasis or Psoriatic Arthritis (Ps + PsA), 153 with Rheumatoid Arthritis (RA), 67 with Systemic Sclerosis (SSc), 536 with Multiple Sclerosis (MS), and 93 with Myasthenia Gravis (MG) and 282 unrelated controls. We confirmed previously established associations of HLA-DRB1∗15 (OR = 2.17) and HLA-DRB1∗03 (OR = 1.81) alleles with MS, HLA-DRB1∗03 with SLE (OR = 2.49), HLA-DRB1∗01 (OR = 1.79) and HLA-DRB1∗04 (OR = 2.81) with RA, HLA-DRB1∗07 with Ps + PsA (OR = 1.79), HLA-DRB1∗01 (OR = 2.28) and HLA-DRB1∗08 (OR = 3.01) with SSc, and HLA-DRB1∗03 with MG (OR = 2.98). We further observed a consistent negative association of HLA-DRB1∗13 allele with SLE, Ps + PsA, RA, and SSc (18.3%, 19.3%, 16.3%, and 11.9%, resp., versus 29.8% in controls). HLA-DRB1∗13 frequency in the AIDs group was 20.0% (OR = 0.58). Although different alleles were associated with particular AIDs, the same allele, HLA-DRB1∗13, was underrepresented in all of the six diseases analysed. This observation suggests that this allele may confer protection for AIDs, particularly for systemic and rheumatic disease. The protective effect of HLA-DRB1∗13 could be explained by a more proficient antigen presentation by these molecules, favouring efficient clonal deletion during thymic selection.
Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance.
Emotional responses are associated with distinct body alterations and are crucial to foster adaptive responses, well-being, and survival. Emotion identification may improve peoples’ emotion regulation strategies and interaction with multiple life contexts. Several studies have investigated emotion classification systems, but most of them are based on the analysis of only one, a few, or isolated physiological signals. Understanding how informative the individual signals are and how their combination works would allow to develop more cost-effective, informative, and objective systems for emotion detection, processing, and interpretation. In the present work, electrocardiogram, electromyogram, and electrodermal activity were processed in order to find a physiological model of emotions. Both a unimodal and a multimodal approach were used to analyze what signal, or combination of signals, may better describe an emotional response, using a sample of 55 healthy subjects. The method was divided in: (1) signal preprocessing; (2) feature extraction; (3) classification using random forest and neural networks. Results suggest that the electrocardiogram (ECG) signal is the most effective for emotion classification. Yet, the combination of all signals provides the best emotion identification performance, with all signals providing crucial information for the system. This physiological model of emotions has important research and clinical implications, by providing valuable information about the value and weight of physiological signals for emotional classification, which can critically drive effective evaluation, monitoring and intervention, regarding emotional processing and regulation, considering multiple contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.