There has been a great deal of interest in the use of nanostructured bacterial cellulose membranes for biomedical applications, including tissue implants, wound healing, and drug delivery. However, as bacterial cellulose does not intrinsically present antimicrobial properties, in the present study, antimicrobial bacterial cellulose membranes were obtained by chemical grafting of aminoalkyl groups onto the surface of its nanofibrillar network. This approach intends to mimic intrinsic antimicrobial properties of chitosan. Interestingly, these novel grafted bacterial cellulose membranes (BC-NH2) are simultaneously lethal against S. aureus and E. coli and nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus may be useful for biomedical applications. In addition to these biological properties, the bioactive nanostructured BC-NH2 membranes also present improved mechanical and thermal properties.
New nanocomposite films based on different chitosan matrices (two chitosans with different DPs and one water soluble derivative) and bacterial cellulose were prepared by a fully green procedure by casting a water based suspension of chitosan and bacterial cellulose nanofibrils. The films were characterized by several techniques, namely SEM, AFM, X-ray diffraction, TGA, tensile assays and visible spectroscopy. They were highly transparent, flexible and displayed better mechanical properties than the corresponding unfilled chitosan films. These new renewable nanocomposite materials also presented reasonable thermal stability and low O 2 permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.