a b s t r a c tPhases of higher aeolian activity are responsible for the formation and movement of large transgressive dunefields. Well-reported phases of aeolian activity in northwest Europe are coincident with global cooling events and were related to enhanced westerly winds and storminess. However, the extent to which these climatic episodes influenced dunefield dynamics in southwest Europe remains an open question. Ground penetrating radar (GPR) was used to image the stratigraphy of a cliff-top coastal transgressive dunefield in Portugal and reconstruct former windfield regimes. Using optically stimulated luminescence (OSL) five major phases of aeolian activity were dated at 12.6, 5.6, 1.2, 0.4 and 0.3 ka, and related to coastal instability and enhanced westerlies. These phases were later reconciled to favorable patterns of atmospheric circulation simulated by global and regional climate models at both synoptic and local scales, respectively. The results prove that major phases of aeolian activity in southwest Europe are associated with the onset of cold climate events of global distribution coinciding with aeolian accumulation in northwest Europe. This implies the dominance of zonal westerlies along the western coast of Europe from Denmark to Portugal during the onset of cold climate events. Model simulations suggest that the pattern of atmospheric circulation during periods of enhanced aeolian activity is compatible with prolonged negative phases of the North Atlantic Oscillation (NAO).
The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.