The aim of this work was to develop a bioactive bone substitute with an effective antibacterial ability based on a cerium (Ce) doped glass-reinforced hydroxyapatite (GR-HA) composite. Developed composites were physicochemically characterized, using x-ray diffraction (XRD) analysis, SEM, energy dispersive x-ray spectroscopy (EDS), and flexural bending strength (FBS) tests. X-ray photoelectron spectroscopy (XPS) analysis was performed to analyze the oxidation state of Ce in the prepared doped glass. The antimicrobial activity of the composites was evaluated against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa; whether the cytocompatibility profile was assayed with human osteoblastic-like cells (Mg-63 cell line). The results revealed that the Ce inclusion in the GR-HA matrix induced the antimicrobial ability of the composite. In addition, Ce-doped materials reported an adequate biological behavior following seeding of osteoblastic populations, by inducing cell adhesion and proliferation. Developed materials were also found to enhance the expression of osteoblastic-related genes. Overall, the developed GR-HA_Ce composite is a prospective candidate to be used within the clinical scenario with a successful performance due to the effective antibacterial properties and capability of enhancing the osteoblastic cell response.
a b s t r a c tFilamentous fungi (ff) are consistently recognized as drinking water (DW) inhabitants, typically harboured in biofilms. Their sessile behaviour is still poorly understood. This study aimed the evaluation of the influence of several abiotic factors (substratum, hydrodynamic conditions and nutrient availability) on biofilm formation by Penicillium brevicompactum and P. expansum isolated from DW. Fungal adhesion was quantified on high density polyethylene (HDPE) and polyvinyl chloride (PVC) surfaces using synthetic tap water (STW) and R2A broth, under stagnant or agitated (25 and 150 rpm) conditions. Fungal spore numbers were assessed after staining with Calcofluor White MR2 and epifluorescence microscopy. The surface charge and physicochemical properties of spores were characterized for a mechanistic understanding on the adhesion process. The adhesion kinetics of spores was represented accurately by the Logistic model, in which adhesion increased with time until a maximum level attained before spore germination (8 h after incubation). In general, P. brevicompactum demonstrated to adhere in a higher extent than P. expansum (12 Â 10 4 spores/cm 2 vs 1.7 Â 10 4 spores/cm 2 ). Moreover, fungal adhesion was potentiated under stagnation and using R2A broth. HDPE and PVC allowed spore adhesion at similar extents. Adhesion predictions based on the extended Derjaguin, Landau, Verwey and Overbeek (XDLVO) theory corroborated the experimental results, highlighting the role of physicochemical surface properties on the adhesion of spores. These results allowed to refine a model for ff biofilm formation. The overall results help to understand key aspects determining the presence of P. brevicompactum and P. expansum biofilms in DW, where stagnant conditions and the presence of nutrients should be avoided to prevent ff biofilm formation.
Biofouling is the unwanted accumulation of deposits on surfaces, composed by organic and inorganic particles and (micro)organisms. Its occurrence in industrial equipment is responsible for several drawbacks related to operation and maintenance costs, reduction of process safety and product quality, and putative outbreaks of pathogens. The understanding on the role of operating conditions in biofouling development highlights the hydrodynamic conditions as key parameter. In general, (bio)fouling occurs in a higher extension when laminar flow conditions are used. However, the characteristics and resilience of biofouling are highly dependent on the hydrodynamic conditions under which it is developed, with turbulent conditions being associated to recalcitrant biodeposits. In industrial settings like heat exchangers, fluid distribution networks and stirred tanks, hydrodynamics plays a dual function, affecting the process effectiveness while favouring biofouling formation. This review summarizes the hydrodynamics played in conventional industrial settings and provides an overview on the relevance of hydrodynamic conditions in biofouling development as well as in the effectiveness of industrial processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.