Highlights d Tuba8 drives differentiation of radial glia into apical intermediate progenitors d Tuba8 promotes direct neurogenesis and acquisition of distinct neuronal fates d Tuba8 resistance to C-terminal tyrosination and D2 cleavage underlies these effects
Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA sequencing atlas of over 200,000 nuclei derived from the proliferative germinal matrix and laminating cortical plate of 15 prenatal, non-pathological postmortem samples from 17 to 41 gestational weeks, and 3 adult controls. This dataset captures prenatal gliogenesis with high temporal resolution and is provided as a resource for further interrogation. Our computational analysis resolves greater complexity of glial progenitors, including transient glial intermediate progenitor cell (gIPC) and nascent astrocyte populations in the third trimester of human gestation. We use lineage trajectory and RNA velocity inference to further characterize specific gIPC subpopulations preceding both oligodendrocyte (gIPC-O) and astrocyte (gIPC-A) lineage differentiation. We infer unique transcriptional drivers and biological pathways associated with each developmental state, validate gIPC-A and gIPC-O presence within the human germinal matrix and cortical plate in situ, and demonstrate gIPC states being recapitulated across adult and pediatric glioblastoma tumors.
Recent studies have demonstrated that, despite their nomenclature, gliomas recapitulate an interneuron progenitor-like state that drives tumor progression. During human neurodevelopment, interneurons arise from the subcortical ganglionic eminences and migrate tangentially into the neocortex, settling in the cortical plate where they integrate local neurocircuitry. Analogously, malignant glioblastoma (GBM) cells migrate from the tumor core into the surrounding healthy tissue. This innate infiltrative property renders these malignant cells elusive to surgical resection, leading to tumor recurrence. To understand the regulatory networks that drive tumor infiltration from a neurodevelopmental perspective, we generated a single-nucleus Assay for Transposase-Accessible Chromatin sequencing (snATAC-seq) dataset of 41,000 nuclei from the core and infiltrative edge of surgically resected GBM specimens (n = 4). Concurrently, we sequenced 46,000 nuclei from non-pathological, postmortem samples of second- and third-trimester neocortices (n = 17). We integrated these datasets with paired single-nucleus RNA sequencing (snRNA-seq) data and identified candidate regulatory TFs that exhibit high correlation between motif enrichment and TF expression. Using single-trajectory inference and pseudo-time analyses, we identified TCF12 as a potential driver of interneuron lineage fate in developing cortical progenitors. Given its implication in projection neuron migration, we were intrigued to find that TCF12 activity is highest in GBM cells with a migratory interneuron signature, hinting at its putative role in tumor infiltration. To understand the significance of these findings, we will interrogate other genes in the TCF12 regulatory network with the ultimate goal of identifying therapeutic targets that inhibit GBM infiltration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.