SummaryThe MerR family is a group of bacterial transcriptional regulators that respond to different environmental stimuli, such as heavy metals, oxidative stress or antibiotics. Here we characterize a new member of this family that is highly selective for Au ions. We show that this Salmonella regulator, named GolS, directly controls the expression of at least two transcriptional units specifically required for Au resistance. By chromosomal mutagenesis, we demonstrated that Au-selectivity is accomplished by a metal-binding motif in GolS. Among the monovalent metal-ion sensing MerR regulators GolS clusters in a branch distant from enterobacterial CueR orthologues. We propose that GolS and its homologues evolved to cope with toxic concentration of Au ion, allowing microorganisms to withstand contaminated environments.
SummarySalmonella employs a specific set of proteins that allows it to detect the presence of gold salts in the environment and to mount the appropriate resistance response. This includes a P-type ATPase, GolT, and a small cytoplasmic metal binding protein, GolB. Their expression is controlled by a MerR-like sensor, GolS, which is highly selective for Au ions. Here, we identify a new GolS-controlled operon named gesABC which codes for a CBA efflux system, and establish its role in Au resistance. GesABC can also mediate drug resistance when induced by Au in a GolS-dependent manner, in a strain deleted in the main drug transporter acrAB. The GolS-controlled transcription of gesABC differs from the other GolS-regulated loci. It is activated by gold, but not induced by copper, even in a strain deleted of the main Cu transporter gene copA, which triggers a substantial GolS-dependent induction of golTS and golB. We demonstrate that the Au-dependent induction of gesABC transcription requires higher GolS levels than for the other members of the gol regulon. This correlates with a divergent GolS operator in the gesABC promoter. We propose that the hierarchical induction within the gol regulon allows Salmonella to cope with Aucontaminated environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.