An important issue in modern protein biophysics is whether structurally homologous proteins share common stability and/or folding features. Flavodoxin is an archetypal alpha/beta protein organized in three layers: a central beta-sheet (strand order 21345) flanked by helices 1 and 5 on one side and helices 2, 3, and 4 on the opposite side. The backbone internal dynamics of the apoflavodoxin from Anabaena is analyzed here by the hydrogen exchange method. The hydrogen exchange rates indicate that 46 amide protons, distributed throughout the structure of apoflavodoxin, exchange relatively slowly at pH 7.0 (k(ex) < 10(-1) min(-1)). According to their distribution in the structure, protein stability is highest on the beta-sheet, helix 4, and on the layer formed by helices 1 and 5. The exchange kinetics of Anabaena apoflavodoxin was compared with those of the apoflavodoxin from Azotobacter, with which it shares a 48% sequence identity, and with Che Y and cutinase, two other alpha/beta (21345) proteins with no significant sequence homology with flavodoxins. Both similarities and differences are observed in the cores of these proteins. It is of interest that a cluster of a few structurally equivalent residues in the central beta-strands and in helix 5 is common to the cores.
We have destabilized apoflavodoxin by site-specific excision of its C-terminal helix. The resulting flavodoxin fragment (Fld1-149) is compact and monomeric at pH 7.0, with spectroscopic properties of a molten globule and a low conformational stability. To study if Fld1-149 is cooperatively stabilized, we have measured the equilibrium urea unfolding by fluorescence, circular dichroism, and size-exclusion chromatography. The three techniques produced coincident unfolding curves. Furthermore, the thermal unfolding seems also to be cooperative as the same temperature of half-denaturation is obtained using fluorescence and circular dichroism. Fld1-149 displays cold denaturation. The equilibrium properties of Fld1-149 demonstrate that molten globules lacking well-defined tertiary interactions can still be cooperatively stabilized and that cooperatively may appear in protein conformations of very low stability. This suggests that protein folding intermediates, can, in principle, be cooperatively stabilized.
Knowledge of protein stability principles provides a means to increase protein stability in a rational way. Here we explore the feasibility of stabilizing proteins by replacing solvent-exposed hydrogen-bonded charged Asp or Glu residues by the neutral isosteric Asn or GLN: The rationale behind this is a previous observation that, in some cases, neutral hydrogen bonds may be more stable that charged ones. We identified, in the apoflavodoxin from Anabaena PCC 7119, three surface-exposed aspartate or glutamate residues involved in hydrogen bonding with a single partner and we mutated them to asparagine or glutamine, respectively. The effect of the mutations on apoflavodoxin stability was measured by both urea and temperature denaturation. We observed that the three mutant proteins are more stable than wild-type (on average 0.43 kcal/mol from urea denaturation and 2.8 degrees C from a two-state analysis of fluorescence thermal unfolding data). At high ionic strength, where potential electrostatic repulsions in the acidic apoflavodoxin should be masked, the three mutants are similarly more stable (on average 0.46 kcal/mol). To rule out further that the stabilization observed is due to removal of electrostatic repulsions in apoflavodoxin upon mutation, we analysed three control mutants and showed that, when the charged residue mutated to a neutral one is not hydrogen bonded, there is no general stabilizing effect. Replacing hydrogen-bonded charged Asp or Glu residues by Asn or Gln, respectively, could be a straightforward strategy to increase protein stability.
Electrostatic contributions to the conformational stability of apoflavodoxin were studied by measurement of the proton and salt-linked stability of this highly acidic protein with urea and temperature denaturation. Structure-based calculations of electrostatic Gibbs free energy were performed in parallel over a range of pH values and salt concentrations with an empirical continuum method. The stability of apoflavodoxin was higher near the isoelectric point (pH 4) than at neutral pH. This behavior was captured quantitatively by the structure-based calculations. In addition, the calculations showed that increasing salt concentration in the range of 0 to 500 mM stabilized the protein, which was confirmed experimentally. The effects of salts on stability were strongly dependent on cationic species: K + , Na + , Ca 2+ , and Mg 2+ exerted similar effects, much different from the effect measured in the presence of the bulky choline cation. Thus cations bind weakly to the negatively charged surface of apoflavodoxin. The similar magnitude of the effects exerted by different cations indicates that their hydration shells are not disrupted significantly by interactions with the protein.Site-directed mutagenesis of selected residues and the analysis of truncation variants indicate that cation binding is not site-specific and that the cation-binding regions are located in the central region of the protein sequence. Three-state analysis of the thermal denaturation indicates that the equilibrium intermediate populated during thermal unfolding is competent to bind cations. The unusual increase in the stability of apoflavodoxin at neutral pH affected by salts is likely to be a common property among highly acidic proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.