Lizard activity and endurance of cold climate is regulated by several factors such as evolutionary potential, acclimatization capacity, physiological tolerance, and locomotion among thermally advantageous microenvironments. Liolaemus lineomaculatus, a lizard inhabiting a wide range of cold environments in Patagonia, provides an excellent model to test interpopulation variability in thermal performance curves (TPCs) and usage of microhabitats. We obtained critical thermal minima and maxima, and performed running trials at eight temperatures using lizards from both a temperate-site (high-altitude) population at 42° S and a cold-site population at 50° S. The availability of environmental temperatures for running performance in open ground and in potential lizard refuges were recorded, and showed that lizards in the temperate site had a greater availability of thermal environments offering temperatures conducive to locomotion. Generalized additive mixed models showed that the two populations displayed TPCs of different shapes in 0.15 m runs at temperatures near their optimal temperature, indicating a difference in thermal sensitivity at high temperatures. However, the rest of the locomotor parameters remained similar between Liolaemus lineomaculatus from thermal and ecological extremes of their geographic distribution and this may partly explain their ability to endure a cold climate.
In environments where the temperature periodically drops below zero, it is remarkable that some lizards can survive. Behaviorally, lizards can find microsites for overwintering where temperatures do not drop as much as the air temperature. Physiologically, they can alter their biochemical balance to tolerate freezing or avoid it by supercooling. We evaluated the cold hardiness of a population of Liolaemus pictus argentinus Müller and Hellmich, 1939 in the mountains of Esquel (Patagonia, Argentina) during autumn. Additionally, we assessed the thermal quality (in degree-days) of potential refuges in a mid-elevation forest (1100 m above sea level (asl)) and in the high Andean steppe (1400 m asl). We analyzed the role of urea, glucose, total proteins, and albumin as possible cryoprotectants, comparing a group of lizards gradually exposed to temperatures lower than 0 °C with a control group maintained at room temperature. However, we found no evidence to support the presence of freeze tolerance or supercooling mechanisms in this species as related to the analyzed metabolites. Instead, the low frequency of degree-days below 0 °C and temperatures never lower than −3 °C in potential refuges suggest that L. p. argentinus might avoid physiological investments (such as supercooling and freeze tolerance) by behaviorally selecting appropriate refuges to overcome cold environmental temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.