Microcurrent therapy can increase lipolytic activity. However, it is unknown if the increased availability of lipids can influence the selection of energy substrates during a single session of aerobic exercise. We aimed to analyze the effect of microcurrent application to the abdominal region in the consumption of lipids and carbohydrates, and respiratory exchange ratio (RER) during a single session of moderate aerobic exercise in young adults. A pilot study was conducted in which participants were allocated to intervention (IG) or placebo (PG) groups. In both groups, 40 min of microcurrent application with two frequencies (25 and 10 Hz) followed by 50 min of moderate-intensity aerobic exercise (45–55% of heart rate reserve) on a cycloergometer were performed. The microcurrent application was performed without intensity in the PG. A portable gas analyzer (K4b2) was used during exercise in both groups. Thirty-eight participants (20.6 ± 1.8 years; 18 in IG and 20 in PG) were enrolled. There were no significant differences in the consumption of substrates or RER between the groups during exercise (p > 0.05). Microcurrent application seems to be insufficient to influence the consumption of energy substrates and RER during a single session of aerobic exercise in young adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.