‘Bailey’ (Reg. No. CV‐111, PI 659502) is a large‐seeded virginia‐type peanut (Arachis hypogaea L. subsp. hypogaea var. hypogaea) with partial resistance to five diseases that occur commonly in the Virginia‐Carolina production area: early leaf spot (caused by Cercospora arachidicola Hori), late leaf spot [caused by Cercosporidium personatum (Berk. & M.A. Curtis) Deighton], Cylindrocladium black rot [caused by Cylindrocladium parasiticum Crous, M.J. Wingf. & Alfenas], Sclerotinia blight (caused by Sclerotinia minor Jagger), and tomato spotted wilt (caused by Tomato spotted wilt tospovirus). It also has partial resistance to southern stem rot (caused by Sclerotium rolfsii Sacc.). Bailey was developed as part of a program of selection for multiple‐disease resistance funded by growers, seedsmen, shellers, and processors. Bailey was tested under the experimental designation N03081T and was released by the North Carolina Agricultural Research Service (NCARS) in 2008. Bailey was tested by the NCARS, the Virginia Agricultural Experimental Station, and five other state agricultural experiment stations and the USDA‐ARS units participating in the Uniform Peanut Performance Tests. Bailey has an alternate branching pattern, an intermediate runner growth habit, medium green foliage, and high contents of fancy pods and medium virginia‐type seeds. It has approximately 34% jumbo and 46% fancy pods, seeds with tan testas and an average weight of 823 mg seed−1, and an extra large kernel content of approximately 42%. Bailey is named in honor of the late Dr. Jack E. Bailey, formerly the peanut breeding project's collaborating plant pathologist.
Inheritance of glyphosate resistance in a Palmer amaranth biotype from North Carolina was studied. Glyphosate rates for 50% survival of glyphosate-resistant (GR) and glyphosate-susceptible (GS) biotypes were 1288 and 58 g ha−1, respectively. These values for F1 progenies obtained from reciprocal crosses (GR×GSandGS×GRwere 794 and 501 g ha−1, respectively. Dose response of F1 progenies indicated that resistance was not fully dominant over susceptibility. Lack of significant differences between dose responses for reciprocal F1 families suggested that genetic control of glyphosate resistance was governed by nuclear genome. Analysis of F1 backcross (BC1F1) families showed that 10 and 8 BC1F1 families out of 15 fitted monogenic inheritance at 2000 and 3000 g ha−1glyphosate, respectively. These results indicate that inheritance of glyphosate resistance in this biotype is incompletely dominant, nuclear inherited, and might not be consistent with a single gene mechanism of inheritance. Relative 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) copy number varied from 22 to 63 across 10 individuals from resistant biotype. This suggested that variableEPSPScopy number in the parents might be influential in determining if inheritance of glyphosate resistance is monogenic or polygenic in this biotype.
RESEARCH S t. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] is widely adapted as a lawn grass in warm, tropical and subtropical regions of the world (Sauer, 1972). The grass is highly resistant to weed infestation (Busey, 2003), grows well in a broad range of soil conditions, and exhibits good performance under shade conditions relative to other warm-season grasses (Busey and David, 1991; Busey et al., 1982b). Broad leaf blades and rapid stolon production allow the grass to form a coarse-textured monostand that is well suited for sod production, home lawns, and commercial landscapes. All these characteristics make St. Augustinegrass a valued turfgrass in the southern United States. The genus Stenotaphrum is comprised of seven species, all indigenous to coastlines from East Africa to islands of the South Pacific (Busey, 1995; Sauer, 1972). Pembagrass [S. dimidatum (L.) Brongn.] is the most closely related species to St. Augustinegrass. Evidence of introgression from this species in some polyploid St. Augustinegrass introductions has been observed (Busey, 1993, 1995). The base chromosome number of S. secundatum is
Glyphosate-resistant Palmer amaranth is a serious problem in southern cropping systems. Much phenotypic variation is observed in Palmer amaranth populations with respect to plant growth and development and susceptibility to herbicides. This may be related to levels of genetic diversity existing in populations. Knowledge of genetic diversity in populations of Palmer amaranth may be useful in understanding distribution and development of herbicide resistance. Research was conducted to assess genetic diversity among and within eight Palmer amaranth populations collected from North Carolina and Georgia using amplified fragment length polymorphism (AFLP) markers. Pair-wise genetic similarity (GS) values were found to be relatively low, averaging 0.34. The highest and the lowest GS between populations were 0.49 and 0.24, respectively, while the highest and the lowest GS within populations were 0.56 and 0.36, respectively. Cluster and principal coordinate (PCO) analyses grouped individuals mostly by population (localized geographic region) irrespective of response to glyphosate or gender of individuals. Analysis of molecular variance (AMOVA) results when populations were nested within states revealed significant variation among and within populations within states while variation among states was not significant. Variation among and within populations within state accounted for 19 and 77% of the total variation, respectively, while variation among states accounted for only 3% of the total variation. The within population contribution towards total variation was always higher than among states and among populations within states irrespective of response to glyphosate or gender of individuals. These results are significant in terms of efficacy of similar management approaches both in terms of chemical and biological control in different areas infested with Palmer amaranth.
Z oysiagrass are warm-season, perennial turfgrass species that have high heat and drought tolerances, which generally reduces input and maintenance requirements. Due to their vigorous growth during the summer months, zoysiagrass are well adapted to the southern United States and upward into the transition zone. They are frequently used in residential lawns, golf courses, and landscapes. Due to their competitive drought tolerance and cold hardiness, zoysiagrass have been gaining in popularity throughout the transition zone. The genus Zoysia (2n = 4x = 40) is indigenous to the coastal Pacific Rim and consists of 11 species (Anderson, 2000). In the United States, Z. japonica and Z. matrella are the two main species commonly referred to as zoysiagrass. Other Zoysia species, including Z. minima (Colenso) Zotov, Z. machrostachya Franch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.