Host genetic factors, such as histo-blood group antigens (HBGAs), are associated with susceptibility to norovirus (NoV) and rotavirus (RV) infections. Recent advances point to the gut microbiome as a key player necessary for a viral pathogen to cause infection. In vitro NoV attachment to host cells and resulting infections have been linked to interactions with certain bacterial types in the gut microbiota. We investigated the relationship between host genotype, gut microbiota, and viral infections. Saliva and fecal samples from 35 adult volunteers were analysed for secretor status genotype, the gut microbiota composition by 16S rRNA gene sequencing, and salivary IgA titers to NoV and RV. Higher levels of IgA against NoV and RV were related to secretor-positive status. No significant differences were found between the FUT2 genotype groups, although the multivariate analysis showed a significant impact of host genotype on specific viral susceptibilities in the microbiome composition. A specific link was found between the abundance of certain bacterial groups, such as Faecalibacterium and Ruminococcus spp., and lower IgA titers against NoV and RV. As a conclusion, we can state that there is a link between host genetics, gut microbiota, and susceptibility to viral infections in humans.
Rotavirus is the leading agent causing acute gastroenteritis in young children, with the P[8] genotype accounting for more than 80% of infections in humans. The molecular bases for binding of the VP8* domain from P[8] VP4 spike protein to its cellular receptor, the secretory H type-1 antigen (Fuc-α1,2-Gal-β1,3-GlcNAc; H1), and to its precursor lacto- N -biose (Gal-β1,3-GlcNAc; LNB) have been determined. The resolution of P[8] VP8* crystal structures in complex with H1 antigen and LNB and site-directed mutagenesis experiments revealed that both glycans bind to the P[8] VP8* protein through a binding pocket shared with other members of the P[II] genogroup (i.e.: P[4], P[6] and P[19]). Our results show that the L-fucose moiety from H1 only displays indirect contacts with P[8] VP8*. However, the induced conformational changes in the LNB moiety increase the ligand affinity by two-fold, as measured by surface plasmon resonance (SPR), providing a molecular explanation for the different susceptibility to rotavirus infection between secretor and non-secretor individuals. The unexpected interaction of P[8] VP8* with LNB, a building block of type-1 human milk oligosaccharides, resulted in inhibition of rotavirus infection, highlighting the role and possible application of this disaccharide as an antiviral. While key amino acids in the H1/LNB binding pocket were highly conserved in members of the P[II] genogroup, differences were found in ligand affinities among distinct P[8] genetic lineages. The variation in affinities were explained by subtle structural differences induced by amino acid changes in the vicinity of the binding pocket, providing a fine-tuning mechanism for glycan binding in P[8] rotavirus.
Group A rotaviruses are a major cause of acute gastroenteritis in children. The diversity and unequal geographical prevalence of rotavirus genotypes have been linked to histo-blood group antigens (HBGAs) in different human populations. In order to evaluate the role of HBGAs in rotavirus infections in our population, secretor status (FUT2+), ABO blood group, and Lewis antigens were determined in children attended for rotavirus gastroenteritis in Valencia, Spain. During three consecutive years (2013–2015), stool and saliva samples were collected from 133 children with rotavirus infection. Infecting viral genotypes and HBGAs were determined in patients and compared to a control group and data from blood donors. Rotavirus G9P[8] was the most prevalent strain (49.6%), followed by G1P[8] (20.3%) and G12P[8] (14.3%). Rotavirus infected predominantly secretor (99%) and Lewis b positive (91.7%) children. Children with blood group A and AB were significantly more prone to rotavirus gastroenteritis than those with blood group O. Our results confirm that a HBGA genetic background is linked to rotavirus P[8] susceptibility. Rotavirus P[8] symptomatic infection is manifestly more frequent in secretor-positive (FUT2+) than in non-secretor individuals, although no differences between rotavirus G genotypes were found.
Human noroviruses (NoVs) are the main etiological agents of acute gastroenteritis worldwide. While NoVs are highly diverse (more than 30 genotypes have been detected in humans), during the last 40 years most outbreaks and epidemics have been caused by GII.4 genotype strains, raising questions about their persistence in the population. Among other potential explanations, immune evasion is considered to be a main driver of their success. In order to study antibody recognition and evasion in detail, we analyzed a conformational epitope recognized by a monoclonal antibody (3C3G3) by phage display, site-directed mutagenesis, and surface plasmon resonance. Our results show that the predicted epitope is composed of 11 amino acids within the P domain: P245, E247, I389, Q390, R397, R435, G443, Y444, P445, N446, and D448. Only two of them, R397 and D448, differ from the homologous variant (GII.4 Den-Haag_2006b) and from a previous variant (GII.4 VA387_1996) that is not recognized by the antibody. A double mutant derived from the VA387_1996 variant containing both changes, Q396R and N447D, is recognized by the 3C3G3 monoclonal antibody, confirming the participation of the two sites in the epitope recognized by the antibody. Furthermore, a single change, Q396R, is able to modify the histo-blood group antigen (HBGA) recognition pattern. These results provide evidence that the epitope recognized by the 3C3G3 antibody is involved in the virus-host interactions, both at the immunological and at the receptor levels. IMPORTANCEHuman noroviruses are the main cause of viral diarrhea worldwide in people of all ages. Noroviruses can infect individuals who had been previously exposed to the same or different norovirus genotypes. Norovirus genotype GII.4 has been reported to be most prevalent during the last 40 years. In the present study, we describe a novel viral epitope identified by a monoclonal antibody and located within the highly diverse P domain of the capsid protein. The evolution of this epitope along with sequential GII.4 variants has allowed noroviruses to evade previously elicited antibodies, thus explaining how the GII.4 genotype can persist over long periods, reinfecting the population. Our results also show that the epitope participates in the recognition of host receptors that have evolved over time, as well. N oroviruses (NoVs) are the predominant etiological agents of acute gastroenteritis worldwide, causing both outbreaks and sporadic cases (1-3). In many countries, NoVs have become the main cause of infantile gastroenteritis since the introduction of rotavirus vaccines (4-7), and they have also been recognized globally as the main cause of associated foodborne diseases (8,9).NoVs belong to the family Caliciviridae, and currently, they are classified into 6 genogroups (GI to GVI) (10) subdivided into more than 30 genotypes based on the capsid protein sequence diversity. Nevertheless, most human NoV infections are caused by genogroups GI and GII. Furthermore, in the last 2 decades, genotype GII.4 has been th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.