The use of magnetic nanoparticles as theranostic agents for the detection and treatment of cancer diseases has been extensively analyzed in the last few years. In this work, cubic-shaped cobalt and zinc-doped iron oxide nanoparticles with edge lengths in the range from 28 to 94 nm are proposed as negative contrast agents for magnetic resonance imaging and to generate localized heat by magnetic hyperthermia, obtaining high values of transverse relaxation coefficients and specific adsorption rates. The applied magnetic fields presented suitable characteristics for the potential validation of the results into the clinical practice in all cases. Pure iron oxide and cobalt- and zinc-substituted ferrites have been structurally and magnetically characterized, observing magnetite as the predominant phase and weak ferrimagnetic behavior at room temperature, with saturation values even larger than those of bulk magnetite. The coercive force increased due to the incorporation of cobalt ions, while zinc substitution promotes a significant increase in saturation magnetization. After their transfer to aqueous solution, those particles showing the best properties were chosen for evaluation in in vitro cell models, exhibiting high critical cytotoxic concentrations and high internalization degrees in several cell lines. The magnetic behavior of the nanocubes after their successful cell internalization was analyzed, detecting negligible variations on their magnetic hysteresis loops and a significant decrease in the specific adsorption rate values.
For this work, an integrated system composed of a polypropylene reactor and a palladium on silica monolithic catalyst was designed and manufactured by 3D‐printing. These devices are able to perform solution phase chemistry in a robotic orbital shaker. The capped reactor was obtained in its entirety by 3D‐printing, using polypropylene and fused deposition modeling. The monolithic catalyst was also obtained by 3D‐printing ‐robocasting‐ of a silica support, sintering and subsequent palladium deposition through the wet impregnation method. The catalytic efficiency in Sonogashira or Suzuki reactions as well as the recyclability of the entire system – catalyst+reactor – were studied. The strong electrostatic adsorption (SEA) of the palladium on sintered silica and the reduced mechanical stress produced by the convenient adjustment of the catalyst into the polypropylene reactor makes the catalytic system reusable without significant loss of catalytic activity.
A tricatalytic compartmentalized system that immobilizes metallic species to perform one-pot sequential functionalization is described: a three-dimensional (3D)-printed palladium monolith, ferritic copper(I) magnetic nanoparticles, and a 3D-printed polypropylene capsule-containing copper(II) loaded onto polystyrene-supported 1,5,7-triazabicyclo[4.4.0]dec-5-ene (PS-TBD) allowed the rapid synthesis of diverse substituted 1-([1,1′-biphenyl]-4-yl)-1H-1,2,3-triazoles. The procedure is based on the Chan−Lam azidation/copper alkyne−azide cycloaddition/Suzuki reaction strategy in the solution phase. This catalytic system enabled the efficient assembly of the final compounds in high yields without the need for special additives or intermediate isolation. The monolithic catalyst-containing immobilized palladium species was synthesized by surface chemical modification of a 3D-printed silica monolith using a soluble polyimide resin as a key reagent, thus creating an extremely robust composite. All three immobilized catalysts described here were easily recovered and reused in numerous cycles. This work exemplifies the role of 3D printing in the design and manufacture of devices for compartmented multicatalytic systems to carry out complex one-pot transformations.
Magnetic nanoparticles are versatile materials that have boosted the development of different biomedical applications, being superparamagnetic magnetite nanoparticles a milestone in the field, after achieving clinical approval as contrast agents in magnetic resonance imaging (Feridex®), magnetic hyperthermia agents for oncological treatments (NanoTherm®), or iron deficiency supplement (Feraheme®). However, its potential as theragnostic agent could be further expanded by its encapsulation within a biodegradable hydrogel, capable of enhancing the biocompatibility and loading abilities, to simultaneously carry drugs, radiotracers, or biomolecules. Gelatin, is a natural biopolymer with optimal in vivo feature and gelling capacity that has been extensively used for decades in pharmaceuticals. In this work, we have addressed the preparation of gelatin nanoparticles, bare and loaded with magnetite nanoparticles, with controlled size to be used as contrast agents in magnetic resonance imaging. The main formulation parameters influencing the preparation of gelatin nanoparticles with controlled size by single-step desolvation method, were studied and optimized, to produce small gelatin nanoparticles (97nm) and highly loaded (38% w/w) Fe3O4@citrate gelatin nanoparticles (150 nm) with high magnetic response (65emus/g). The viability assays of the magnetic gelatin nanoparticles, tested with mesenchymal stem cells, showed negligible toxicity and in vitro magnetic resonance imaging tests, performed in agar phantoms, revealed a good contrast for T2 weighting MRI, r2 = 265.5(mM−1 s−1), superior to commercial products, such as Resovist or Endorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.