Animals survive environmental challenges by adapting their physiology and behavior through homeostatic regulatory processes, mediated in part by specific neuropeptide release from the hypothalamus. Animals can also avoid environmental stressors within seconds, a fast behavioral adaptation for which hypothalamic involvement is not established. Using brain-wide neural activity imaging in behaving zebrafish, here we find that hypothalamic neurons are rapidly engaged during common avoidance responses elicited by various environmental stressors. By developing methods to register cellular-resolution neural dynamics to multiplexed in situ gene expression, we find that each category of stressor recruits similar combinations of multiple peptidergic cell types in the hypothalamus. Anatomical analysis and functional manipulations demonstrate that these diverse cell types play shared roles in behavior, are glutamatergic, and converge upon spinal-projecting brainstem neurons required for avoidance. These data demonstrate that hypothalamic neural populations, classically associated with slow and specific homeostatic adaptations, also together give rise to fast and generalized avoidance behavior.1 .
Locomotion-related signals in the brain To calculate where we are in space, continuous knowledge of one’ s speed is necessary. How does the brain know how fast the body is traveling during locomotion? Using in vivo calcium imaging, electrophysiology, optogenetics, cell tracing, and histology, Farrell et al . identified neurons in the rodent supramammillary nucleus of the hypothalamus that encode future locomotor speed and potently drive locomotion when stimulated. Because these locomotor neurons have extensive axons in brain areas that support spatial navigation, this cell type distributes this information selectively to areas that require knowledge of speed. This nucleus is functionally positioned between input from a higher-order cognitive center and the downstream midbrain where locomotor nuclei reside. —PRS
Animals survive environmental challenges by adapting their physiology and behavior through homeostatic regulatory processes, mediated in part by specific neuropeptide release from the hypothalamus. Animals can also avoid environmental stressors within seconds, a fast behavioral adaptation for which hypothalamic involvement is not established. Using brain-wide neural activity imaging in behaving zebrafish, here we find that hypothalamic neurons are rapidly engaged during common avoidance responses elicited by various environmental stressors. By developing methods to register cellular-resolution neural dynamics to multiplexed in situ gene expression, we find that each category of stressor recruits similar combinations of multiple peptidergic cell types in the hypothalamus. Anatomical analysis and functional manipulations demonstrate that these diverse cell types play shared roles in behavior, are glutamatergic, and converge upon spinal-projecting brainstem neurons required for avoidance. These data demonstrate that hypothalamic neural populations, classically associated with slow and specific homeostatic adaptations, also together give rise to fast and generalized avoidance behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.