Pilot studies play an important role in health research, but they can be misused, mistreated and misrepresented. In this paper we focus on pilot studies that are used specifically to plan a randomized controlled trial (RCT). Citing examples from the literature, we provide a methodological framework in which to work, and discuss reasons why a pilot study might be undertaken. A well-conducted pilot study, giving a clear list of aims and objectives within a formal framework will encourage methodological rigour, ensure that the work is scientifically valid and publishable, and will lead to higher quality RCTs. It will also safeguard against pilot studies being conducted simply because of small numbers of available patients.
ObjectivesThere is increasing recognition that insufficient attention has been paid to the choice of outcomes measured in clinical trials. The lack of a standardized outcome classification system results in inconsistencies due to ambiguity and variation in how outcomes are described across different studies. Being able to classify by outcome would increase efficiency in searching sources such as clinical trial registries, patient registries, the Cochrane Database of Systematic Reviews, and the Core Outcome Measures in Effectiveness Trials (COMET) database of core outcome sets (COS), thus aiding knowledge discovery.Study Design and SettingA literature review was carried out to determine existing outcome classification systems, none of which were sufficiently comprehensive or granular for classification of all potential outcomes from clinical trials. A new taxonomy for outcome classification was developed, and as proof of principle, outcomes extracted from all published COS in the COMET database, selected Cochrane reviews, and clinical trial registry entries were classified using this new system.ResultsApplication of this new taxonomy to COS in the COMET database revealed that 274/299 (92%) COS include at least one physiological outcome, whereas only 177 (59%) include at least one measure of impact (global quality of life or some measure of functioning) and only 105 (35%) made reference to adverse events.ConclusionsThis outcome taxonomy will be used to annotate outcomes included in COS within the COMET database and is currently being piloted for use in Cochrane Reviews within the Cochrane Linked Data Project. Wider implementation of this standard taxonomy in trial and systematic review databases and registries will further promote efficient searching, reporting, and classification of trial outcomes.
Bootstrapping was found to make very little difference to conclusions from the NLR model.
This review aimed to ascertain the extent to which nonadherence to treatment protocol is reported and addressed in a cohort of published analyses of randomised controlled trials (RCTs). One hundred publications of RCTs, randomly selected from those published in BMJ, New England Journal of Medicine, the Journal of the American Medical Association and The Lancet during 2008, were reviewed to determine the extent and nature of reported nonadherence to treatment protocol, and whether statistical methods were used to examine the effect of such nonadherence on both benefit and harms analyses. We also assessed the quality of trial reporting of treatment protocol nonadherence and the quality of reporting of the statistical analysis methods used to investigate such nonadherence. Nonadherence to treatment protocol was reported in 98 of the 100 trials, but reporting on such nonadherence was often vague or incomplete. Forty-two publications did not state how many participants started their randomised treatment. Reporting of treatment initiation and completeness was judged to be inadequate in 64% of trials with short-term interventions and 89% of trials with long-term interventions. More than half (51) of the 98 trials with treatment protocol nonadherence implemented some statistical method to address this issue, most commonly based on per protocol analysis (46) but often labelled as intention to treat (ITT) or modified ITT (23 analyses in 22 trials). The composition of analysis sets for their benefit outcomes were not explained in 57% of trials, and 62% of trials that presented harms analyses did not define harms analysis populations. The majority of defined harms analysis populations (18 out of 26 trials, 69%) were based on actual treatment received, while the majority of trials with undefined harms analysis populations (31 out of 43 trials, 72%) appeared to analyse harms using the ITT approach. Adherence to randomised intervention is poorly considered in the reporting and analysis of published RCTs. The majority of trials are subject to various forms of nonadherence to treatment protocol, and though trialists deal with this nonadherence using a variety of statistical methods and analysis populations, they rarely consider the potential for bias introduced. There is a need for increased awareness of more appropriate causal methods to adjust for departures from treatment protocol, as well as guidance on the appropriate analysis population to use for harms outcomes in the presence of such nonadherence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.