Mast-cell growth factor (MGF) is encoded by the murine steel (Sl) locus and is a ligand for the tyrosine kinase receptor protein encoded by the proto-oncogene c-kit at the murine dominant white spotting (W) locus. Mutations at both these loci affect mast cells, primordial germ cells (PGCs), haemopoietic stem cells and melanocytes. In many Sl and W mutants, the rapid proliferation of PGC that normally occurs between day 7 and 13.5 of embryonic development fails to occur. As c-kit is expressed in PGCs while MGF is expressed in the surrounding mesenchyme, MGF might promote the proliferation of PGCs. Here we report that MGF is essential for PGC survival in culture, but does not stimulate PGC proliferation. Moreover, whereas both the transmembrane and soluble proteolytic cleavage forms of MGF stimulate mast-cell proliferation, soluble MGF has a relatively limited ability to support survival of PGCs in culture, thus explaining the sterility in mice carrying the steel-dickie (Sld) mutation, which encodes only a soluble form of MGF, and providing a functional role for a transmembrane growth factor.
Male mice lacking expression of Plzf, a DNA sequence-specific transcriptional repressor, show progressive germ cell depletion due to exhaustion of the spermatogonial stem cell population. This is likely due to the deregulated expression of genes controlling the switch between spermatogonial self-renewal and differentiation. Here we show that Plzf directly represses the transcription of kit, a hallmark of spermatogonial differentiation. Plzf represses both endogenous kit expression and expression of a reporter gene under the control of the kit promoter region. A discrete sequence of the kit promoter, required for Plzf-mediated kit transcriptional repression, is bound by Plzf both in vivo and in vitro. A 3-bp mutation in this Plzf binding site abolishes the responsiveness of the kit promoter to Plzf repression. A significant increase in kit expression is also found in the undifferentiated spermatogonia isolated from Plzf ؊/؊ mice. Thus, we suggest that one mechanism by which Plzf maintains the pool of spermatogonial stem cells is through a direct repression of kit expression.
Follicle-stimulating hormone (FSH) and its intracellular mediator, cAMP, increase the mRNA levels for the Steel factor (SLF, the c-kit ligand) in cultured primary mouse Sertoli cells. The inductive effect of cAMP is more evident in cultures from 13-day-old animals than in cultures from 18-day-old animals. Analysis through the polymerase chain reaction (PCR) indicates that (Bu)2cAMP or FSH treatment increases the levels of the mRNAs for both the potentially soluble form and the transmembrane form of SLF in cultured Sertoli cells. The ratio between mRNAs encoding the potentially soluble form and the transmembrane form of SLF increases during postnatal testis development, and it is higher in cultured Sertoli cells with respect to total testis, suggesting that, under the in vitro conditions, SLF could be produced by Sertoli cells mainly as a soluble factor. Soluble recombinant SLF stimulates, in a dose-dependent fashion, thymidine incorporation in cultures of isolated germ cell populations enriched in the mitotic stages (spermatogonia), independently of the presence of serum, whereas cAMP analogs have no effect. Autoradiographic analysis shows that SLF selectively stimulates DNA synthesis in type A spermatogonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.