The functional role of astrocyte calcium signaling in brain information processing was intensely debated in recent decades. This interest was motivated by high resolution imaging techniques showing highly developed structure of distal astrocyte processes. Another point was the evidence of bi-directional astrocytic regulation of neuronal activity. To analyze the effects of interplay of calcium signals in processes and in soma mediating correlations between local signals and the cell-level response of the astrocyte we proposed spatially extended model of the astrocyte calcium dynamics. Specifically, we investigated how spatiotemporal properties of Ca 2+ dynamics in spatially extended astrocyte model can coordinate (e.g., synchronize) networks of neurons and synapses.
This article presents a rehabilitation technique based on a lower-limb exoskeleton integrated with a human-machine interface (HMI). HMI is used to record and process multimodal signals collected using a foot motor imagery (MI)-based brain-machine interface (BMI) and multichannel electromyographic (EMG) signals recorded from leg muscles. Current solutions of HMI-equipped rehabilitation assistive technologies tested under laboratory conditions demonstrated a great deal of success, but faced several difficulties caused by the limited accuracy of detecting MI electroencephalography (EEG) and the reliability of online control when executing a movement by patients dressed in an exoskeleton. In the case of lowerlimb representation, there is still the problem of reliably distinguishing leg movement intentions and differentiating them in BMI systems. Targeting the design of a rehabilitation technique replicating the natural mode of motor control in exoskeleton walking patients, we have shown how the combined use of multimodal signals can improve the accuracy, performance, and reliability of HMI. The system was tested on healthy subjects operating the exoskeleton under different conditions. The study also resulted in algorithms of multimodal HMI data collection, processing, and classification. The developed system can analyze up to 15 signals simultaneously in real-time during a movement. Foot MI is extracted from EEG signals (seven channels) using the event-related (de)synchronization effect. Supplemented by EMG signals reflecting motor intention, the control system can initiate and differentiate the movement of the right and left legs with a high degree of reliability. The classification and control system permits one to work online when the exoskeleton is executing a movement.
We propose a novel biologically plausible computational model of working memory (WM) implemented by a spiking neuron network (SNN) interacting with a network of astrocytes. The SNN is modeled by synaptically coupled Izhikevich neurons with a non-specific architecture connection topology. Astrocytes generating calcium signals are connected by local gap junction diffusive couplings and interact with neurons via chemicals diffused in the extracellular space. Calcium elevations occur in response to the increased concentration of the neurotransmitter released by spiking neurons when a group of them fire coherently. In turn, gliotransmitters are released by activated astrocytes modulating the strength of the synaptic connections in the corresponding neuronal group. Input information is encoded as two-dimensional patterns of short applied current pulses stimulating neurons. The output is taken from frequencies of transient discharges of corresponding neurons. We show how a set of information patterns with quite significant overlapping areas can be uploaded into the neuron-astrocyte network and stored for several seconds. Information retrieval is organized by the application of a cue pattern representing one from the memory set distorted by noise. We found that successful retrieval with the level of the correlation between the recalled pattern and ideal pattern exceeding 90% is possible for the multi-item WM task. Having analyzed the dynamical mechanism of WM formation, we discovered that astrocytes operating at a time scale of a dozen of seconds can successfully store traces of neuronal activations corresponding to information patterns. In the retrieval stage, the astrocytic network selectively modulates synaptic connections in the SNN leading to successful recall. Information and dynamical characteristics of the proposed WM model agrees with classical concepts and other WM models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.