Background Atrial fibrillation (AF) is the most common tachyarrhythmia and associated with a risk of stroke. The detection and diagnosis of AF represent a major clinical challenge due to AF’s asymptomatic and intermittent nature. Novel consumer-grade mobile health (mHealth) products with automatic arrhythmia detection could be an option for long-term electrocardiogram (ECG)-based rhythm monitoring and AF detection. Objective We evaluated the feasibility and accuracy of a wearable automated mHealth arrhythmia monitoring system, including a consumer-grade, single-lead heart rate belt ECG device (heart belt), a mobile phone application, and a cloud service with an artificial intelligence (AI) arrhythmia detection algorithm for AF detection. The specific aim of this proof-of-concept study was to test the feasibility of the entire sequence of operations from ECG recording to AI arrhythmia analysis and ultimately to final AF detection. Methods Patients (n=159) with an AF (n=73) or sinus rhythm (n=86) were recruited from the emergency department. A single-lead heart belt ECG was recorded for 24 hours. Simultaneously registered 3-lead ECGs (Holter) served as the gold standard for the final rhythm diagnostics and as a reference device in a user experience survey with patients over 65 years of age (high-risk group). Results The heart belt provided a high-quality ECG recording for visual interpretation resulting in 100% accuracy, sensitivity, and specificity of AF detection. The accuracy of AF detection with the automatic AI arrhythmia detection from the heart belt ECG recording was also high (97.5%), and the sensitivity and specificity were 100% and 95.4%, respectively. The correlation between the automatic estimated AF burden and the true AF burden from Holter recording was >0.99 with a mean burden error of 0.05 (SD 0.26) hours. The heart belt demonstrated good user experience and did not significantly interfere with the patient’s daily activities. The patients preferred the heart belt over Holter ECG for rhythm monitoring (85/110, 77% heart belt vs 77/109, 71% Holter, P=.049). Conclusions A consumer-grade, single-lead ECG heart belt provided good-quality ECG for rhythm diagnosis. The mHealth arrhythmia monitoring system, consisting of heart-belt ECG, a mobile phone application, and an automated AF detection achieved AF detection with high accuracy, sensitivity, and specificity. In addition, the mHealth arrhythmia monitoring system showed good user experience. Trial Registration ClinicalTrials.gov NCT03507335; https://clinicaltrials.gov/ct2/show/NCT03507335
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.