The white flowers of N. suaveolens emit a complex bouquet of fragrance volatiles. The dominant compounds are benzenoids (e.g. methyl benzoate, methyl salicylate, benzyl benzoate and benzyl salicylate), monoterpenes (1,8-cineole, limonene, sabinene, E-beta-ocimene, beta-beta-myrcene, alpha- and beta-pinene and alpha-terpineole) and sesquiterpenes (e.g. caryophyllene), which are all emitted at higher levels during the night. Here, we show that the simultaneous nocturnal emission of most monoterpenes is realized by a single floral-specific multi-product enzyme (1,8-cineole synthase, CIN), which synthesizes the monoterpenes of the "cineole cassette". Interestingly, N. suaveolens is the only known taxon of the Suaveolentes section to have a flower emitting "cineole cassette of monoterpenes" which is otherwise typical for the Alatae section. Gene sequence analysis of CIN has revealed the highest similarities to other angiosperm monoterpene synthases from Vitis vinifera, Quercus ilex, Citrus unshiu and C. limon, which cluster in the same branch of the terpene synthase B subfamily. However, based on its synthesized products, N. suaveolens CIN shares similarity with enzymes of the Arabidopsis thaliana root and Salvia officinalis leaf. The N. suaveolens CIN gene is only expressed in the stigma/style tissue and petals. Thin sections of petals present the enzyme primarily in the adaxial and abaxial epidermis; this facilitates the comprehensive emission of volatiles in all spacial directions. The oscillation of monoterpene emission is a consequence of the regulation of the CIN gene by the circadian clock, with oscillations occurring at the level of transcript and protein accumulations and of enzyme activity. Light/dark or dark/light transition signals synchronize the slow-running endogenous clock. Two strategies for synchronized scent emission have been established in N. suaveolens flowers: (i) the synthesis of volatile organic compounds by a multi-product enzyme and (ii) the coordination of biosynthetic pathways by a circadian clock.
S0 adenosyl-L-methionine (SAM) is a ubiquitous methyl donor and a precursor in the biosynthesis of ethylene, polyamines, biotin, and nicotianamine in plants. Only limited information is available regarding its synthesis (SAM cycle) and its concentrations in plant tissues. The SAM concentrations in flowers of Nicotiana suaveolens were determined during day/night cycles and found to fluctuate rhythmically between 10 and 50 nmol g -1 fresh weight. Troughs of SAM levels were measured in the evening and night, which corresponds to the time when the major floral scent compound, methyl benzoate, is synthesized by a SAM dependent methyltransferase (NsBSMT) and when this enzyme possesses its highest activity. The SAM synthetase (NsSAMS1) and methionine synthase (NsMS1) are enzymes, among others, which are involved in the synthesis and regeneration of SAM. Respective genes were isolated from a N. suaveolens petal cDNA library. Transcript accumulation patterns of both SAM regenerating enzymes matched perfectly those of the bifunctional NsBSMT; maximum mRNA accumulations of NsMS1 and NsSAMS1 were attained in the evening. Ethylene, which is synthesized from SAM, reached only low levels of 1-2 ppbv in N. suaveolens flowers. It is emitted in a burst at the end of the life span of the flowers, which correlates with the increased expression of the 1-aminocyclopropane-1-carboxylate oxidase (NsACO).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.