Convergent studies demonstrated that p53 regulates homologous recombination (HR) independently of its classic tumour-suppressor functions in transcriptionally transactivating cellular target genes that are implicated in growth control and apoptosis. In this review, we summarise the analyses of the involvement of p53 in spontaneous and double-strand break (DSB)-triggered HR and in alternative DSB repair routes. Molecular characterisation indicated that p53 controls the fidelity of Rad51-dependent HR and represses aberrant processing of replication forks after stalling at unrepaired DNA lesions. These findings established a genome stabilising role of p53 in counteracting errorprone DSB repair. However, recent work has also unveiled a stimulatory role for p53 in topoisomerase I-induced recombinative repair events that may have implications for a gain-offunction phenotype of cancer-related p53 mutants. Additional evidence will be discussed which suggests that p53 and/or p53-regulated gene products also contribute to nucleotide excision, base excision, and mismatch repair.
PURPOSE Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood. Despite aggressive therapy, the 5-year survival rate for patients with metastatic or recurrent disease remains poor, and beyond PAX-FOXO1 fusion status, no genomic markers are available for risk stratification. We present an international consortium study designed to determine the incidence of driver mutations and their association with clinical outcome. PATIENTS AND METHODS Tumor samples collected from patients enrolled on Children's Oncology Group trials (1998-2017) and UK patients enrolled on malignant mesenchymal tumor and RMS2005 (1995-2016) trials were subjected to custom-capture sequencing. Mutations, indels, gene deletions, and amplifications were identified, and survival analysis was performed. RESULTS DNA from 641 patients was suitable for analyses. A median of one mutation was found per tumor. In FOXO1 fusion-negative cases, mutation of any RAS pathway member was found in > 50% of cases, and 21% had no putative driver mutation identified. BCOR (15%), NF1 (15%), and TP53 (13%) mutations were found at a higher incidence than previously reported and TP53 mutations were associated with worse outcomes in both fusion-negative and FOXO1 fusion-positive cases. Interestingly, mutations in RAS isoforms predominated in infants < 1 year (64% of cases). Mutation of MYOD1 was associated with histologic patterns beyond those previously described, older age, head and neck primary site, and a dismal survival. Finally, we provide a searchable companion database ( ClinOmics ), containing all genomic variants, and clinical annotation including survival data. CONCLUSION This is the largest genomic characterization of clinically annotated rhabdomyosarcoma tumors to date and provides prognostic genetic features that refine risk stratification and will be incorporated into prospective trials.
A subgroup of severe combined immunodeficiencies (SCID) is characterized by lack of T and B cells and is caused by defects in genes required for T- and B-cell receptor gene rearrangement. Several of these genes are also involved in nonhomologous end joining of DNA double-strand break repair, the largest subgroup consisting of patients with T−B−NK+SCID due to DCLRE1C/ARTEMIS defects. We postulated that in patients with ARTEMIS deficiency, early and late complications following hematopoietic cell transplantation might be more prominent compared with patients with T−B−NK+SCID caused by recombination activating gene 1/2 (RAG1/2) deficiencies. We analyzed 69 patients with ARTEMIS and 76 patients with RAG1/2 deficiencies who received transplants from either HLA-identical donors without conditioning or from HLA-nonidentical donors without or with conditioning. There was no difference in survival or in the incidence or severity of acute graft-versus-host disease regardless of exposure to alkylating agents. Secondary malignancies were not observed. Immune reconstitution was comparable in both groups, however, ARTEMIS-deficient patients had a significantly higher occurrence of infections in long-term follow-up. There is a highly significant association between poor growth in ARTEMIS deficiency and use of alkylating agents. Furthermore, abnormalities in dental development and endocrine late effects were associated with alkylation therapy in ARTEMIS deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.