This study aims to investigate (1) microbial patterns in fracture-related infections (FRIs) in comparison to microbiological patterns of periprosthetic joint infections (PJIs), (2) the identification of effective empiric antibiotic therapy for FRIs and PJIs and (3) analysis of difficult-to-treat (DTT) pathogens. Patients treated for FRIs or PJIs from 2017 to 2020 were evaluated for pathogens detected during treatment. Antibiotic susceptibility profiles were examined with respect to broadly used antibiotics and antibiotic combinations. Resistance rates to rifampicin or fluoroquinolone were determined. A total of 81 patients with PJI and 86 with FRI were included in the study. For FRIs Staphylococcus aureus was the most common infection-causing pathogen (37.4% vs. 27.9% for PJI). Overall, there was no statistical difference in pathogen distribution (p = 0.254). For FRIs, combinations of gentamicin + vancomycin (93.2%), co-amoxiclav + glycopeptide and meropenem + vancomycin (91.9% each) would have been effective for empiric therapy, similar to PJIs. Difficult to treat pathogens were more frequently detectable in PJIs (11.6% vs. 2.3%). Empiric therapy combinations such as gentamicin + vancomycin, co-amoxiclav + glycopeptide or meropenem + vancomycin, are effective antibiotic strategies for both FRI and PJI patients. More DTT pathogens were detectable in PJIs compared to FRIs.
Antibiotic treatment strategies for fracture-related infections (FRI) are often extrapolated from periprosthetic joint infections (PJI), although, in contrast to PJI, detailed analysis of pathogens and their antibiotic resistance is missing. Therefore, this study aimed to investigate antibiotic susceptibility profiles to identify effective empiric antibiotic treatment for early-, delayed-, and late-onset FRI. Patients treated for FRI from 2013 to 2020 were grouped into early (<2 weeks), delayed (3–10 weeks), and late (>10 weeks) onset of infection. Antibiotic susceptibility profiles were examined with respect to broadly used antibiotics and antibiotic combinations. In total, 117 patients (early n = 19, delayed n = 60, late n = 38) were enrolled. In early-onset FRI, 100.0% efficacy would be achieved by meropenem + vancomycin, gentamicin + vancomycin, co-amoxiclav + glycopeptide, ciprofloxacin + glycopeptide and piperacillin/tazobactam + glycopeptide. For patients with delayed FRI, the highest susceptibility was revealed for meropenem + vancomycin, gentamicin + vancomycin and ciprofloxacin + glycopeptide (96.7%). Meropenem + vancomycin was the most effective empiric antimicrobial in patients with late-onset of infection with 92.1% coverage. No subgroup differences in antibiotic sensitivity profiles were observed except for the combination ciprofloxacin + glycopeptide, which was significantly superior in early FRI (F = 3.304, p = 0.04). Across all subgroups meropenem + vancomycin was the most effective empiric treatment in 95.7% of patients with confirmed susceptibility. Meropenem + vancomycin, gentamicin + vancomycin, co-amoxiclav + glycopeptide are the best therapeutic options for FRI, regardless of the onset of infection. To avoid multidrug resistance, established antibiotic combinations such as co-amoxiclav with a glycopeptide seem to be reasonable as a systemic antibiotic therapy, while vancomycin + gentamicin could be implemented in local antibiotic therapy to reduce adverse events during treatment.
Background Antibiotic-containing cement and bone graft substitute-coated orthopedic implants provide the advantages of simultaneous local antibiotic delivery and internal stable fixation, aiding in both infection eradication and osseous healing. Standardized protocols pertaining to implant coating techniques in various clinical and particularly intraoperative settings are scarce, and available literature is limited. This systematic review aims to provide a summary of the available current literature reporting on custom-made coating techniques of orthopedic implants, indications, outcomes, and associated complications in clinical use. Methods A systematic search of the literature in PubMed, Medline, Embase, and Cochrane Library databases was performed in accordance with PRISMA guidelines. Articles reporting specifically on custom-made coating techniques of orthopedic implants in a clinical setting were eligible. Results A total of 41 articles with a cumulative total number of 607 cases were included. Indications for treatment mostly involved intramedullary infections after previous plate osteosynthesis or nailing. A variety of implants ranging from intramedullary nails, plates, wires, and rods served as metal cores for coating. Polymethylmethacrylate (PMMA) bone cement was most commonly used, with vancomycin as the most frequently added antibiotic additive. Chest tubes and silicone tubes were most often used to mold. Common complications are cement debonding and breakage of the metallic implant. Conclusion Adequate coating techniques can reduce the burden of treatment and be associated with favorable outcomes. Lack of general consensus and heterogeneity in the reported literature indicate that the perfect all-in-one implant coating method is yet to be found. Further efforts to improve implant coating techniques are warranted. Level of evidence III.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.