Microtubules are born and reborn continuously, even during quiescence. These polymers are nucleated from templates, namely γ-tubulin ring complexes (γ-TuRCs) and severed microtubule ends. Using single-molecule biophysics, we show that nucleation from γ-TuRCs, axonemes and seed microtubules requires tubulin concentrations that lie well above the critical concentration. We measured considerable time lags between the arrival of tubulin and the onset of steady-state elongation. Microtubule-associated proteins (MAPs) alter these time lags. Catastrophe factors (MCAK and EB1) inhibited nucleation, whereas a polymerase (XMAP215) and an anti-catastrophe factor (TPX2) promoted nucleation. We observed similar phenomena in cells. We conclude that GTP hydrolysis inhibits microtubule nucleation by destabilizing the nascent plus ends required for persistent elongation. Our results explain how MAPs establish the spatial and temporal profile of microtubule nucleation.
The Drosophila auditory organ shares equivalent transduction mechanisms with vertebrate hair cells, and both are specified by atonal family genes. Using a whole-organ knockout strategy based on atonal, we have identified 274 Drosophila auditory organ genes. Only four of these genes had previously been associated with fly hearing, yet one in five of the genes that we identified has a human cognate that is implicated in hearing disorders. Mutant analysis of 42 genes shows that more than half of them contribute to auditory organ function, with phenotypes including hearing loss, auditory hypersusceptibility, and ringing ears. We not only discover ion channels and motors important for hearing, but also show that auditory stimulus processing involves chemoreceptor proteins as well as phototransducer components. Our findings demonstrate mechanosensory roles for ionotropic receptors and visual rhodopsins and indicate that different sensory modalities utilize common signaling cascades.
Neurons, like all cells, face the problem that tubulin forms microtubules with too many or too few protofilaments (pfs). Cells overcome this heterogeneity with the γ-tubulin ring complex, which provides a nucleation template for 13-pf microtubules. Doublecortin (DCX), a protein that stabilizes microtubules in developing neurons, also nucleates 13-pf microtubules in vitro. Using fluorescence microscopy assays, we show that the binding of DCX to microtubules is optimized for the lateral curvature of the 13-pf lattice. This sensitivity depends on a cooperative interaction wherein DCX molecules decrease the dissociation rate of their neighbors. Mutations in DCX found in patients with subcortical band heterotopia weaken these cooperative interactions. Using assays with dynamic microtubules, we discovered that DCX binds to polymerization intermediates at growing microtubule ends. These results support a mechanism for stabilizing 13-pf microtubules that allows DCX to template new 13-pf microtubules through associations with the sides of the microtubule lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.