The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
A detailed report is presented on the performance of the embryonic stem cell test (EST) in a European Centre for the Validation of Alternative Methods (ECVAM)-sponsored formal validation study on three in vitro tests for embryotoxicity. Twenty coded test chemicals, classified as non-embryotoxic, weakly embryotoxic or strongly embryotoxic on the basis of their in vivo effects in animals and/or humans, were tested in four laboratories. The outcome showed that the EST can be considered to be a scientifically validated test, which is ready for consideration for use in assessing the embryotoxic potentials of chemicals for regulatory purposes.
Developmental neurotoxicity (DNT) and many forms of reproductive toxicity (RT) often manifest themselves in functional deficits that are not necessarily based on cell death, but rather on minor changes relating to cell differentiation or communication. The fields of DNT/RT would greatly benefit from in vitro tests that allow the identification of toxicant-induced changes of the cellular proteostasis, or of its underlying transcriptome network. Therefore, the ‘human embryonic stem cell (hESC)-derived novel alternative test systems (ESNATS)’ European commission research project established RT tests based on defined differentiation protocols of hESC and their progeny. Valproic acid (VPA) and methylmercury (MeHg) were used as positive control compounds to address the following fundamental questions: (1) Does transcriptome analysis allow discrimination of the two compounds? (2) How does analysis of enriched transcription factor binding sites (TFBS) and of individual probe sets (PS) distinguish between test systems? (3) Can batch effects be controlled? (4) How many DNA microarrays are needed? (5) Is the highest non-cytotoxic concentration optimal and relevant for the study of transcriptome changes? VPA triggered vast transcriptional changes, whereas MeHg altered fewer transcripts. To attenuate batch effects, analysis has been focused on the 500 PS with highest variability. The test systems differed significantly in their responses (<20 % overlap). Moreover, within one test system, little overlap between the PS changed by the two compounds has been observed. However, using TFBS enrichment, a relatively large ‘common response’ to VPA and MeHg could be distinguished from ‘compound-specific’ responses. In conclusion, the ESNATS assay battery allows classification of human DNT/RT toxicants on the basis of their transcriptome profiles.Electronic supplementary materialThe online version of this article (doi:10.1007/s00204-012-0967-3) contains supplementary material, which is available to authorized users.
From 1996 to 2000, ZEBET (Centre for Documentation and Evaluation of Alternative Methods to Animal Experiments at the BgVV, Berlin, Germany) coordinated the European Centre for the Validation of Alternative Methods (ECVAM) prevalidation and validation study on three embryotoxicity tests: a) a test employing embryonic stem cell lines (EST); b) the micromass (MM) test; and c) the postimplantation rat whole-embryo culture assay (WEC test). The main objectives of the study were to assess the performance of these three in vitro tests in discriminating between non-embryotoxic, weakly embryotoxic and strongly embryotoxic compounds. Phase I of the study (1997) was designed as a prevalidation phase, for test protocol optimisation, and for the establishment of a comprehensive database of in vivo and in vitro data on embryotoxic compounds. Phase II (1998–2000) involved a formal validation trial, conducted under blind conditions on 20 test compounds selected from the database, which were coded and distributed to the participating laboratories. In the preliminary phase of the validation study, six chemicals out of the 20, which showed embryotoxic potential, were tested. These results were used to define new biostatistically based prediction models (PMs) for the MM and WEC tests, and to evaluate those developed previously for the EST. As a next step, the PMs were evaluated by using the results for the remaining 14 chemicals of the definitive phase of the validation study. The three in vitro embryotoxicity tests proved to be applicable to testing a diverse group of chemicals with different embryotoxic potentials (non-embryotoxic, weakly embryotoxic, and strongly embryotoxic). The reproducibility of the three in vitro embryotoxicity tests were acceptable according to the acceptance criteria defined by the Management Team. The concordances between the embryotoxic potentials derived from the in vitro data and from the in vivo data were good for the EST and the WEC (PM2) test, and sufficient for the MM test and the WEC (PM1) tests according to the performance criteria defined by the Management Team before the formal validation study. When applying the PM of the EST to the in vitro data obtained in the definitive phase of the formal validation study, chemicals were classified correctly in 78% of the experiments. For the MM and the WEC tests, the PMs provided 70% and 80% (PM2) correct classifications, respectively. And, very importantly, an excellent predictivity (100%, except for PM1 of the WEC test, with 79%, considered as good) was obtained with strongly embryotoxic chemicals in each of the three in vitro tests.
The European Centre for the Validation of Alternative Methods (ECVAM) proposes to make the validation process more flexible, while maintaining its high standards. The various aspects of validation are broken down into independent modules, and the information necessary to complete each module is defined. The data required to assess test validity in an independent peer review, not the process, are thus emphasised. Once the information to satisfy all the modules is complete, the test can enter the peer-review process. In this way, the between-laboratory variability and predictive capacity of a test can be assessed independently. Thinking in terms of validity principles will broaden the applicability of the validation process to a variety of tests and procedures, including the generation of new tests, new technologies (for example, genomics, proteomics), computer-based models (for example, quantitative structure–activity relationship models), and expert systems. This proposal also aims to take into account existing information, defining this as retrospective validation, in contrast to a prospective validation study, which has been the predominant approach to date. This will permit the assessment of test validity by completing the missing information via the relevant validation procedure: prospective validation, retrospective validation, catch-up validation, or a combination of these procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.