The silver-haired bat variant of rabies virus (SHBRV)
One of the most important criteria for the successful manufacture of a therapeutic protein (e.g., an antibody) is to develop a mammalian cell line that maintains stability of production. Problems with process yield, lack of effective use of costly resources, and a possible delay in obtaining regulatory approval of the product may ensue otherwise. Therefore the stability of expression in a number of Chinese hamster ovary (CHO) derived production cell lines that were isolated using the glutamine synthetase (GS) selection system was investigated by defining a culture as unstable if the titer (which is a measure of productivity) of a cell line expressing an antibody or antibody-fusion protein declined by 20-30% or more as it underwent 55 population doublings. Using this criterion, a significant proportion of the GS-selected CHO production cell lines were observed to be unstable. Reduced antibody titers correlated with the gradual appearance of a secondary, less productive population of cells as detected with flow cytometric analysis of intracellular antibody content. Where tested, it was observed that the secondary population arose spontaneously from the parental population following multiple passages, which suggested inherent clonal instability. Moreover, the frequency of unstable clones decreased significantly if the host cell line from which the candidate production cell lines were derived was apoptotic-resistant. This data suggested that unstable cell lines were more prone to apoptosis, which was confirmed by the fact that unstable cell lines had higher levels of Annexin V and caspase 3 activities. This knowledge has been used to develop screening protocols that identify unstable CHO production cell lines at an early stage of the cell line development process, potentially reducing the cost of biotherapeutic development.
The putative role of nitric oxide in the neuropathogenesis of Borna disease was investigated by determining changes in the expression of inducible nitric oxide synthase (iNOS) mRNA and constitutively expressed NOS (cNOS) mRNA in brains of Borna disease virus (BDV)-infected rats. iNOS mRNA was not detected in normal rat brain but was identified in BDV-infected brain at 14 days postinfection (p.i.), reaching maximum levels at 21 days p.i., when neurological signs and inflammatory reactions in the brain were also at a peak cNOS mRNA was expressed in both normal brain and infected brain, increasing markedly at 17 days p.i. and reaching a peak at 21 days p.i. In situ hybridization analysis revealed iNOS mRNA in some, but not all, BDV-infected regions of the brain, particularly in the basolateral cortex and the hippocampus. iNOS-positive cells, as identified immunohistologically, were preferentially localized in perivascular areas of the hippocampus and in outer cortical layers. These iNOS-positive cells resembled monocytes/macrophages in morphology and distribution pattern but were significantly fewer. The correlation of iNOS and cNOS mRNA expression with the development of neurological disease, as well as the enhanced expression of iNOS within brain regions with inflammatory lesions, strongly suggests that NO may contribute to pathogenesis of Borna disease.
The multifunctional ADP-ribosyl cyclase, CD38, catalyzes the cyclization of NAD+ to cyclic ADP-ribose (cADPr). The latter gates Ca2+ release through microsomal membrane-resident ryanodine receptors (RyRs). We first cloned and sequenced full-length CD38 cDNA from a rabbit osteoclast cDNA library. The predicted amino acid sequence displayed 59, 59, and 50% similarity, respectively, to the mouse, rat, and human CD38. In situ RT-PCR revealed intense cytoplasmic staining of osteoclasts, confirming CD38 mRNA expression. Both confocal microscopy and Western blotting confirmed the plasma membrane localization of the CD38 protein. The ADP-ribosyl cyclase activity of osteoclastic CD38 was next demonstrated by its ability to cyclize the NAD+ surrogate, NGD+, to its fluorescent derivative cGDP-ribose. We then examined the effects of CD38 on osteoclast function. CD38 activation by an agonist antibody (A10) in the presence of substrate (NAD+) triggered a cytosolic Ca2+ signal. Both ryanodine receptor modulators, ryanodine, and caffeine, markedly attenuated this cytosolic Ca2+ change. Furthermore, the anti-CD38 agonist antibody expectedly inhibited bone resorption in the pit assay and elevated interleukin-6 (IL-6) secretion. IL-6, in turn, enhanced CD38 mRNA expression. Taken together, the results provide compelling evidence for a new role for CD38/ADP-ribosyl cyclase in the control of bone resorption, most likely exerted via cADPr.
Immune cells invading the central nervous system (CNS) in response to Borna disease virus (BDV) antigens are central to the pathogenesis of Borna disease (BD). We speculate that the response of the resident cells of the brain to infection may be involved in the sensitization and recruitment of these inf lammatory cells. To separate the responses of resident cells from those of cells infiltrating from the periphery, we used dexamethasone to inhibit inf lammatory reactions in BD. Treatment with dexamethasone prevented the development of clinical signs of BD, and the brains of treated animals showed no neuropathological lesions and a virtual absence of markers of inf lammation, cell infiltration, or activation normally seen in the CNS of BDV-infected rats. In contrast, treatment with dexamethasone exacerbated the expression of BDV RNA, which was paralleled by a similarly elevated expression of mRNAs for egr-1, c-fos, and c-jun. Furthermore, dexamethasone failed to inhibit the increase in expression of mRNAs for tumor necrosis factor ␣, macrophage inf lammatory protein 1, interleukin 6, and mob-1, which occurs in the CNS of animals infected with BDV. Our findings suggest that these genes, encoding transcription factors, chemokines, and proinf lammatory cytokines, might be directly activated in CNS resident cells by BDV. This result supports the hypothesis that the initial phase of the inf lammatory response to BDV infection in the brain may be dependent upon virus-induced activation of CNS resident cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.