Three-dimensional motion capture systems such as Vicon have been used to validate commercial electronic performance and tracking systems. However, three-dimensional motion capture cannot be used for large capture areas such as a full football pitch due to the need for many fragile cameras to be placed around the capture volume and a lack of suitable depth of field of those cameras. There is a need, therefore, for a hybrid testing solution for commercial electronic performance and tracking systems using highly precise three-dimensional motion capture in a small test area and a computer vision system in other areas to test for full-pitch coverage by the commercial systems. This study aimed to establish the validity of VisionKit computer vision system against three-dimensional motion capture in a stadium environment. Ten participants undertook a series of football-specific movement tasks, including a circuit, small-sided games and a 20 m sprint. There was strong agreement between VisionKit and three-dimensional motion capture across each activity undertaken. The root mean square difference for speed was 0.04 m·s−1 and for position was 0.18 m. VisionKit had strong agreement with the criterion three-dimensional motion capture system three-dimensional motion capture for football-related movements tested in stadium environments. VisionKit can thus be used to establish the concurrent validity of other electronic performance and tracking systems in circumstances where three-dimensional motion capture cannot be used.
In football, having greater acceleration ability may decide the most important moments within matches. Up to now, commonly used acceleration variables have typically been investigated in isolation, with each variable suffering from unique limitations. Subsequently, any findings may provide a limited representation of what specific acceleration demands had actually occurred. Without gaining a comprehensive understanding of acceleration demands in football, it appears difficult to identify how to best monitor and maximize the long-term development of acceleration ability in footballers, all whilst doing so in a safe, sport-specific manner. Moving toward a more comprehensive analysis of acceleration profiles addresses this, as it can provide a more robust, informative understanding of the unique acceleration demands of competitive match-play. This perspective article aims to discuss the benefits of adopting a more comprehensive analysis of the acceleration demands during competitive matches for football players, by simultaneously analyzing high-intensity accelerations, repeated high acceleration ability (RHAA), and average acceleration. We discuss examples of the calculation and application of a more comprehensive acceleration profile at a team level throughout the course of an entire elite youth football season, as well as on an individual level. Monitoring acceleration profiles more comprehensively not only appears important from a training load/injury prevention perspective, but also, equips coaches and conditioning staff with the specific information necessary to develop and prescribe individualized, acceleration-emphasized training protocols that are replicable to the demands of match-play. Examples of such protocols are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.