The convergence of biofabrication with nanotechnology is largely unexplored but enables geometrical control of cell‐biomaterial arrangement combined with controlled drug delivery and release. As a step towards integration of these two fields of research, this study demonstrates that modulation of electrostatic nanoparticle–polymer and nanoparticle–nanoparticle interactions can be used for tuning nanoparticle release kinetics from 3D printed hydrogel scaffolds. This generic strategy can be used for spatiotemporal control of the release kinetics of nanoparticulate drug vectors in biofabricated constructs.
Thiofunctional polymers are the established standard for the coating and biofunctionalization of gold nanoparticles (AuNPs). However, the nucleophilic and oxidative character of thiols provokes polymeric crosslinking and significantly limits the chemical possibilities to introduce biological functions. Thioethers represent a chemically more stable potential alternative to thiols that would offer easier functionalization, yet a few studies in the literature report inconclusive data regarding the efficacy of thioethers to stabilize AuNPs in comparison to thiols. A systematic comparison is presented of mono- versus multivalent thiol- and thioether-functional polymers, poly(ethylene glycol) versus side chain functional poly(glycidol) (PG) and it is shown that coating of AuNPs with multivalent thioether-functional PG leads to superior colloidal stability, even under physiological conditions and after freeze-drying and resuspension, as compared to thiol analogs at comparable polymer surface coverages. In addition, it is shown that a wide range of functional groups can be introduced in these polymers. Using diazirine functionalization as example, it is demonstrated that proteins can be covalently immobilized, and that conjugation of antibodies via this strategy enables efficient targeting and laser-irradiation induced killing of cells.
Nanosecond pulsed laser irradiation can trigger a release of nucleic acids from gold nanoparticles, but the involved nanoeffects are not fully understood yet. Here we investigate the release of coumarin labeled siRNA from 15 to 30 nm gold particles after nanosecond pulsed laser irradiation. Temperatures in the particle and near the surface were calculated for the different radiant exposures. Upon irradiation with laser pulses of 4 nanosecond duration release started for both particle sizes at a calculated temperature increase of approximately 500 K. Maximum coumarin release was observed for 15 nm particles after irradiation with radiant exposure of 80 mJ cm and with 32 mJ cm for 30 nm particles. This corresponds to a temperature increase of 815 and 900 K, respectively. Our results show that the molecular release by nanosecond pulsed irradiation is based on a different mechanism compared to continuous or femtosecond irradiation. Local temperatures are considerably higher and it is expected that bubble formation plays a crucial role in release and damage to cellular structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.