A recently developed solvent-free compressed-sample technique for matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) analysis allows the reproducible analysis of synthetic polymers and peptides up to 3,500 Da. In this work, we present an improvement in resolution, an increase in intensity and a decrease of the variation coefficient, as illustrated by the analysis of PEG 2000 and MALDI imaging experiments. These advantages were achieved by homogenization of the electrical field, which was disturbed by the drills in the original MALDI target. In order to homogenize the electrical field, a new target with smaller drills was developed, metal powder was added to the matrix/analyte mixture and a round laser raster was used. Furthermore, a ball mill was implemented for the sample preparation to replace the extremely user-dependent grinding in a mortar. The new conditions were successfully applied to the quantification of several peptides of higher molecular weight and gave higher precision than had previously been achieved with the compressed-sample technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.