Despite centuries of research, much about the barbarian migrations that took place between the fourth and sixth centuries in Europe remains hotly debated. To better understand this key era that marks the dawn of modern European societies, we obtained ancient genomic DNA from 63 samples from two cemeteries (from Hungary and Northern Italy) that have been previously associated with the Longobards, a barbarian people that ruled large parts of Italy for over 200 years after invading from Pannonia in 568 CE. Our dense cemetery-based sampling revealed that each cemetery was primarily organized around one large pedigree, suggesting that biological relationships played an important role in these early medieval societies. Moreover, we identified genetic structure in each cemetery involving at least two groups with different ancestry that were very distinct in terms of their funerary customs. Finally, our data are consistent with the proposed long-distance migration from Pannonia to Northern Italy.
This study investigates patterns of mobility in Early Medieval Bavaria through a combined study of diet and associated burial practice. Carbon and nitrogen isotope ratios were analyzed in human bone samples from the Late Roman cemetery of Klettham and from the Early Medieval cemeteries of Altenerding and Straubing-Bajuwarenstrasse. For dietary comparison, samples of faunal bone from one Late Roman and three Early Medieval settlement sites were also analyzed. The results indicate that the average diet was in keeping with a landlocked environment and fairly limited availability of freshwater or marine resources. The diet appears not to have changed significantly from the Late Roman to the Early Medieval period. However, in the population of Altenerding, there were significant differences in the diet of men and women, supporting a hypothesis of greater mobility among women. Furthermore, the isotopic evidence from dietary outliers is supported by "foreign" grave goods and practices, such as artificial skull modification. These results reveal the potential of carbon and nitrogen isotope analysis for questions regarding migration and mobility.
Despite centuries of research, much about the barbarian migrations that took place between the fourth and sixth centuries in Europe remains hotly debated. To better understand this key era that marks the dawn of modern European societies, we obtained ancient genomic DNA from 63 samples from two cemeteries (from Hungary and Northern Italy) that have been previously associated with the Longobards , a barbarian people that ruled large parts of Italy for over 200 years after invading from Pannonia in 568 CE. Our dense cemetery-based sampling revealed that each cemetery was primarily organized around one large pedigree, suggesting that biological relationships played an important role in these early Medieval societies. Moreover, we identified genetic structure in each cemetery involving at least two groups with different ancestry that were very distinct in terms of their funerary customs.Finally, our data was consistent with the proposed long-distance migration from Pannonia to Northern Italy.
We conducted a multi-isotope study of five fifth-century AD cemeteries in modern-day Hungary to determine relationships between nomadic-pastoralist incomers—the historically documented Huns and other nomadic groups—and the sedentary agricultural population of the late Roman province of Pannonia. Contemporary historical sources describe this relationship as adversarial and destructive for the late Roman population, but archaeological evidence indicates high levels of hybridity between different groups. We undertook carbon, nitrogen, strontium and oxygen isotope analyses of bone collagen, dentine and tooth enamel at Keszthely-Fenékpuszta, Hács-Béndekpuszta, Győr-Széchenyi Square, Mözs and Szolnok-Szanda to examine these relationships through past subsistence practices. The patterns at all sites indicate medium to high animal protein consumption with little evidence for a significant contribution of aquatic resources. All populations relied to a great extent on C4 plants, most likely millet. Within each population, diet was heterogeneous, with significant variations in terms of animal protein and C3 and C4 plant consumption. High levels of intra-population and individual variability suggest that populations made use of a range of subsistence strategies, with many individuals exhibiting significant changes over their lifetimes. Rather than being characterised only by violence, the historically-documented influx of nomadic populations appears to have led to widespread changes in subsistence strategies of populations in the Carpathian basin. Nomadic-pastoralist groups may have switched to smaller herds and more farming, and, conversely, local populations may have integrated with a new economic system based on animal herding.
Recent advances in archeogenetics have revived an interest in grand narratives in which 3 ethnic groups are once again thought to be agents of historical change. New scientific 4 developments are generating a sense of optimism that difficult questions in 5 palaeodemography may at last be solved. However, genetic research often uncritically 6 makes use of essentialist models of past populations, reifying genetic populations as 7 ethnic groups. This paper explores how such views of the past may play into notions of 8 racial purity and fears of non-European migrants stoked by adherents of far-right 9 ideologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.