Critical dynamics are assumed to be an attractive mode for normal brain functioning as information processing and computational capabilities are found to be optimal in the critical state. Recent experimental observations of neuronal activity patterns following power-law distributions, a hallmark of systems at a critical state, have led to the hypothesis that human brain dynamics could be poised at a phase transition between ordered and disordered activity. A so far unresolved question concerns the medical significance of critical brain activity and how it relates to pathological conditions. Using data from invasive electroencephalogram recordings from humans we show that during epileptic seizure attacks neuronal activity patterns deviate from the normally observed power-law distribution characterizing critical dynamics. The comparison of these observations to results from a computational model exhibiting self-organized criticality (SOC) based on adaptive networks allows further insights into the underlying dynamics. Together these results suggest that brain dynamics deviates from criticality during seizures caused by the failure of adaptive SOC.
Global gene expression profiling was performed using RNA from adult human hippocampus-derived neuroprogenitor cells (NPCs) and multipotent frontal cortical fetal NPCs compared with adult human mesenchymal stem cells (hMSCs) as a multipotent adult stem cell control, and adult human hippocampal tissue, to define a gene expression pattern that is specific for human NPCs. The results were compared with data from various databases. Hierarchical cluster analysis of all neuroectodermal cell/tissue types revealed a strong relationship of adult hippocampal NPCs with various white matter tissues, whereas fetal NPCs strongly correlate with fetal brain tissue. However, adult and fetal NPCs share the expression of a variety of genes known to be related to signal transduction, cell metabolism and neuroectodermal tissue. In contrast, adult NPCs and hMSCs overlap in the expression of genes mainly involved in extracellular matrix biology. We present for the first time a detailed transcriptome analysis of human adult NPCs suggesting a relationship between hippocampal NPCs and white matter-derived precursor cells. We further provide a framework for standardized comparative gene expression analysis of human brain-derived NPCs with other stem cell populations or differentiated tissues.
The study aimed to investigate the volume of the olfactory bulb (OB) in patients with temporal lobe epilepsy (TLE). Specifically, we wanted to see whether the olfactory deficit typically found in TLE patients also exerts a top-down influence on the OB. Twenty patients, and 20 age- and sex-matched healthy controls underwent olfactory testing by means of the Sniffin' Sticks testing device (measurement of odor threshold, and identification abilities). In addition, they underwent an MR scan with 2-mm-thick T2-weighted fast spin-echo images without interslice gap in the coronal plane covering the anterior and middle segments of the base of the skull. Olfactory function was significantly impaired in TLE patients compared to healthy controls both at threshold level and for odor identification (p < 0.001); in addition, OB volumes were smaller than in controls (p = 0.013). The deficit seen at the level of the OB did not correlate with the side of the epileptic focus. Assuming that the olfactory deficit in TLE patients is due to the central nervous epileptic focus it appears that the OB volume is not only subject to changes in the periphery of the olfactory system, but also changes as a consequence to changes at a cortical level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.