The nature of subtypes in schizophrenia and the meaning of heterogeneity in schizophrenia have been considered a principal controversy in psychiatric research. We addressed these issues in periodic catatonia, a clinical entity derived from Leonhard's classification of schizophrenias, in a genomewide linkage scan. Periodic catatonia is characterized by qualitative psychomotor disturbances during acute psychotic outbursts and by long-term outcome. On the basis of our previous findings of a lifetime morbidity risk of 26.9% of periodic catatonia in first-degree relatives, we conducted a genome scan in 12 multiplex pedigrees with 135 individuals, using 356 markers with an average spacing of 11 cM. In nonparametric multipoint linkage analyses (by GENEHUNTER-PLUS), significant evidence for linkage was obtained on chromosome 15q15 (P = 2.6 x 10(-5); nonparametric LOD score [LOD*] 3.57). A further locus on chromosome 22q13 with suggestive evidence for linkage (P = 1.8 x 10(-3); LOD* 1.85) was detected, which indicated genetic heterogeneity. Parametric linkage analysis under an autosomal dominant model (affecteds-only analysis) provided independent confirmation of nonparametric linkage results, with maximum LOD scores 2.75 (recombination fraction [theta].04; two-point analysis) and 2.89 (theta =.029; four-point analysis), at the chromosome 15q candidate region. Splitting the complex group of schizophrenias on the basis of clinical observation and genetic analysis, we identified periodic catatonia as a valid nosological entity. Our findings provide evidence that periodic catatonia is associated with a major disease locus, which maps to chromosome 15q15.
Schizophrenia is a common and etiologically heterogeneous disorder. Although inheritance of schizophrenic syndromes is complex with genetic and environmental factors contributing to the clinical phenotype, periodic catatonia, a familial subtype of catatonic schizophrenia, appears to be transmitted in an autosomal dominant manner. We report here that a Leu309Met mutation in WKL1, a positional candidate gene on chromosome 22q13.33 encoding a putative non-selective cation channel expressed exclusively in brain, co-segregates with periodic catatonia in an extended pedigree. Structural analyses revealed that this missense mutation results in conformational changes of the mutant protein. Our results not only underscore the importance of genetic mechanisms in the etiology of schizophrenic syndromes, but also provide a better understanding of the pathogenesis and incapacitating course of catatonic schizophrenia and related disorders. Molecular Psychiatry (2001) 6, 302-306.
Cysteine-rich protein 61 (CYR61/CCN1) belongs to the family of CCN matricellular proteins. Most of the known effects of CCN proteins appear to be due to binding to extracellular growth factors or integrins, including alpha(v)beta(3) and alpha(v)beta(5). Although CYR61 can stimulate osteoblast differentiation, until now the effect of CYR61 on osteoclasts was unknown. We demonstrate that recombinant human CYR61 inhibits the formation of multinucleated, alpha(v)beta(3)-positive, or tartrate-resistant acid phosphatase-positive human, mouse, and rabbit osteoclasts in vitro. CYR61 markedly reduced the expression of the osteoclast phenotypic markers tartrate-resistant acid phosphatase, matrix metalloproteinase-9, calcitonin receptor, and cathepsin K. However, CYR61 did not affect the formation of multinucleated osteoclasts when added to osteoclast precursors prior to fusion or affect the number or resorptive activity of osteoclasts cultured on dentine discs, indicating that CYR61 affects early osteoclast precursors but not mature osteoclasts. CYR61 did not affect receptor activator of nuclear factor-kappaB (RANK) ligand-induced phosphorylation of p38 or ERK1/2 in human macrophages and did not affect RANK ligand-induced activation of nuclear factor-kappaB, indicating that CYR61 does not appear to inhibit osteoclastogenesis by affecting RANK signaling. Furthermore, a mutant form of CYR61 defective in binding to alpha(v)beta(3) also inhibited osteoclastogenesis, and CYR61 inhibited osteoclastogenesis similarly in cultures of mouse wild-type or beta(5)(-/-) macrophages. Thus, CYR61 does not appear to inhibit osteoclast formation by interacting with alpha(v)beta(3) or alpha(v)beta(5). These observations demonstrate that CYR61 is a hitherto unrecognized inhibitor of osteoclast formation, although the exact mechanism of inhibition remains to be determined. Given that CYR61 also stimulates osteoblasts, CYR61 could represent an important bifunctional local regulator of bone remodeling.
The prefrontal cortex participates in motor control and is modulated by serotonergic activity. The serotonin transporter (5-HTT) is a major regulator of serotonergic neurotransmission and may thus influence motor control. The short allele (s) of the 5-HTT linked polymorphic region (5-HTTLPR) is associated with less 5-HTT expression and function than the long variant (l). The neurophysiological parameters termed 'Go- and NoGo- centroid location' represent characteristic brain electrical substrates of the execution and inhibition of motor response elicited by the Continuous Performance Test (CPT). In the present study, the impact of the 5-HTTLPR genotype on the centroid locations was investigated in 23 healthy subjects. The NoGo-centroid, but not the Go-centroid, was located significantly more anteriorly in the short allele group (mean electrode location in s/s and s/l, 2.86+/-0.37) compared to the group with two long alleles (l/l, 3.34+/-0.49; t=2.66, p<0.05). Age, gender, and test performance did not differ between groups. The results indicate that 5-HTTLPR genotype dependent 5-HTT function is associated with the neurophysiologically assessed topography of inhibitory motor control and provides further evidence for a genetic influence on central serotonergic and motor function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.