Connexins have been hypothesized to play an important role in intercellular communication within the vascular wall and may provide a mechanistic explanation for conduction of vasomotor responses. To test this hypothesis, we studied the transmission of vasomotor responses in the intact skeletal muscle microcirculation of connexin40-deficient mice (Cx40(-/-)). Arterioles were locally stimulated with hyperpolarizing dilators (acetylcholine [ACh] as well as bradykinin [Bk]) or depolarizing K(+) solution, and the resulting changes in diameter were measured using a videomicroscopy technique at the site of application and up to 1.32 mm upstream. Arterial pressure was elevated 25% in Cx40(-/-) mice (94+/-5 versus 75+/-4 mm Hg). Vessels selected for study had equivalent basal diameter and vasomotor tone in both genotypes of mice. Vasomotion was present in small arterioles of both genotypes, but its intensity was exaggerated in Cx40(-/-) mice. ACh and Bk induced dilation (33% and 53%, respectively, of maximal response) at the site of application that was of similar magnitude in both genotypes. These dilations were observed to spread upstream within <1 second without significant attenuation in Cx40(+/+) mice. However, spreading was severely attenuated in Cx40(-/-) animals (11+/-4% versus 35+/-7% with ACh and 38+/-5% versus 60+/-7% with Bk in Cx40(-/-) and Cx40(+/+), respectively; P<0.05). In contrast, conducted vasoconstrictions, induced by K(+) solution decreased equally with distance in both genotypes. These results support a significant role for Cx40 in vascular intercellular communication. Our observations indicate that Cx40 is required for normal transmission of endothelium-dependent vasodilator responses and may underlie altered vasomotion patterns.
Intercellular channels of gap junctions are formed in vertebrates by the protein family of connexins and allow direct exchange of ions, metabolites and second messenger molecules between apposed cells (reviewed in [1-3]). In the mouse, connexin40 (Cx40) protein has been detected in endothelial cells of lung and heart and in certain heart muscle cells: atrial myocytes, cells of the atrial ventricular (AV) node and cells of the conductive myocardium, which conducts impulses from the AV node to ventricular myocyctes [3]. We have generated mice homozygous for targeted disruption of the Cx40 gene (Cx40-/-mice). The electrocardiograph (ECG) parameters of Cx40-/- mice were very prolonged compared to those of wild type (Cx40+/+) mice, indicating that Cx40-/- mice have lower atrial and ventricular conduction velocities. For 6 out of 31 Cx40-/- animals, different types of atrium-derived abnormalities in cardiac rhythm were recorded, whereas continuous sinus rhythm was observed for the 26 Cx40+/+ and 30 Cx40+/- mice tested. The expression levels of other connexins expressed in heart (Cx37, Cx43 and Cx45) were the same in Cx40-/- and Cx40+/+ mice. Our results demonstrate the function of Cx40 in the regulation and coordination of heart contraction and show that cardiac arrhythmogenesis can not only be caused by defects in the ion channels primarily involved in cellular excitation but also by defects in intercellular communication through gap junction channels. As the distribution of Cx40 protein is similar in mouse and human hearts, further functional analysis of Cx40 should yield relevant insights into arrhythmogenesis in human patients.
Neuregulins (NDF, heregulin, GGF ARIA, or SMDF) are EGF-like growth and differentiation factors that signal through tyrosine kinase receptors of the ErbB family. Here, we report a novel phenotype in mice with targeted mutations in the erbB2, erbB3, or neuregulin-1 genes. These three mutations cause a severe hypoplasia of the primary sympathetic ganglion chain. We provide evidence that migration of neural crest cells to the mesenchyme lateral of the dorsal aorta, in which they differentiate into sympathetic neurons, depends on neuregulin-1 and its receptors. Neuregulin-1 is expressed at the origin of neural crest cells. Moreover, a tight link between neuregulin-1 expression, the migratory path, and the target site of sympathogenic neural crest cells is observed. Sympathetic ganglia synthesize catecholamines in the embryo and the adult. Accordingly, catecholamine levels in mutant embryos are severely decreased, and we suggest that the lack of catecholamines contributes to the embryonal lethality of the erbB3 mutant mice. Thus, neuregulin-1, erbB2, and erbB3 are required for the formation of the sympathetic nervous system; the block in development observed in mutant mice is caused by a lack of neural crest precursor cells in the anlage of the primary sympathetic ganglion chain. Together with previous observations, these findings establish the neuregulin signaling system as a key regulator in the development of neural crest cells.
This study demonstrates that Cx40 deficiency is associated with sinoatrial, intra-atrial, and atrioventricular conduction disturbances. In atrial myocardium of the mouse, Cx40 deficiency results in increased atrial vulnerability and might contribute to arrhythmogenesis.
These findings indicate that in the atria and the AV conduction system, Cx40 is an important determinant of conduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.