The perceived color of a chromatic stimulus is influenced by the chromaticity of its surround. To investigate these influences along the dimension of hue, we measured hue changes induced in stimuli of different hues by isoluminant chromatic surrounds. Generally, induced hue changes were directed in color space away from the hue of the inducing surround and depended on the magnitude on the hue difference between stimulus and surround. With increasing difference in hue between stimulus and surround, induced hue changes increased up to a maximum and then decreased for larger differences. This qualitative pattern was similar for different inducers, but quantitatively, induction was weaker along some directions in cone-opponent color space than along other directions. The strongest induction effects were found along an oblique, blue-yellow axis that corresponds to the daylight axis. The overall pattern of the induction effect shows similarities to the well-known tilt effect, where shifts in perceived angle of oriented stimuli are induced by oriented surrounds. This suggests analogous neural representations and similar mechanisms of contextual processing for different visual features such as orientation and color.
The performed implantation procedures of the intraocular EPI RET3 implant are feasible and reproducible within an acceptable surgical time. The development of inflammatory responses is a specific predisposition of the minipig following any intraocular intervention; nevertheless, the surgical techniques should be further improved to minimize procedure-related reactions. Our results provide a step towards the application of the EPI RET3 system in clinical studies.
A chromatic surround can have a strong influence on the perceived hue of a stimulus. We investigated whether chromatic induction has similar effects on the perception of colors that appear pure and unmixed (unique red, green, blue, and yellow) as on other colors. Subjects performed unique hue settings of stimuli in isoluminant surrounds of different chromaticities. Compared with the settings in a neutral gray surround, unique hue settings altered systematically with chromatic surrounds. The amount of induced hue shift depended on the difference between stimulus and surround hues, and was similar for unique hue settings as for settings of nonunique hues. Intraindividual variability in unique hue settings was roughly twice as high as for settings obtained in asymmetric matching experiments, which may reflect the presence of a reference stimulus in the matching task. Variabilities were also larger with chromatic surrounds than with neutral gray surrounds, for both unique hue settings and matching of nonunique hues. The results suggest that the neural representations underlying unique hue percepts are influenced by the same neural processing mechanisms as the percepts of other colors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.