SummaryBiosynthesis of the compatible solute glycine betaine in Bacillus subtilis confers a considerable degree of osmotic tolerance and proceeds via a two-step oxidation process of choline, with glycine betaine aldehyde as the intermediate. We have exploited the sensitivity of B. subtilis strains defective in glycine betaine production against glycine betaine aldehyde to select for mutants resistant to this toxic intermediate. These strains were also defective in choline uptake, and genetic analysis proved that two mutations affecting different genetic loci (opuB and opuC ) were required for these phenotypes. Molecular analysis allowed us to demonstrate that the opuB and opuC operons each encode a binding protein-dependent ABC transport system that consists of four components. The presumed binding proteins of both ABC transporters were shown to be lipoproteins. Kinetic analysis of [ 14 C]-choline uptake via OpuB (K m 1 mM; V max 21 nmol min À1 mg À1 protein) and OpuC (K m 38 mM;V max 75 nmol min À1 mg À1 protein) revealed that each of these ABC transporters exhibits high af®nity and substantial transport capacity. Western blotting experiments with a polyclonal antiserum cross-reacting with the presumed substrate-binding proteins from both the OpuB and OpuC transporter suggested that the expression of the opuB and opuC operons is regulated in response to increasing osmolality of the growth medium. Primer extension analysis con®rmed the osmotic control of opuB and allowed the identi®cation of the promoter of this operon. The opuB and opuC operons are located close to each other on the B. subtilis chromosome, and their high sequence identity strongly suggests that these systems have evolved from a duplication event of a primordial gene cluster. Despite the close relatedness of OpuB and OpuC, these systems exhibit a striking difference in substrate speci®city for osmoprotectants that would not have been predicted readily for such closely related ABC transporters.
Background and aims: The liver represents one of the major sites of human glucuronidation. Many therapeutic drugs are substrates for UDP-glucuronosyltransferases (UGT) leading to the formation of usually inactive glucuronides. Hepatic glucuronidation undergoes significant changes during fetal and neonatal development requiring age adapted drug therapy. Regulation of individual UGT genes during hepatic development has not been defined. Subjects and methods: Expression of 13 UGT genes and glucuronidation activities were analysed in 16 paediatric liver samples (aged 7-24 months), two fetal samples, and 12 adult liver samples (aged 25-75 years) using duplex reverse transcription-polymerase chain reaction, western blot, and specific catalytic UGT activity assays. Results: No UGT transcripts were detected in fetal liver at 20 weeks' gestation. In contrast, UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, and UGT2B15 transcripts were present without variation in all 28 hepatic samples after six months of age. Significantly lower expression of UGT1A9 and UGT2B4 mRNA was identified in paediatric liver. Hepatic glucuronidation activity in children aged 13-24 months was found to be lower than in adults for ibuprofen (24-fold), amitriptyline (16-fold), 4-tert-butylphenol (40-fold), estrone (15-fold), and buprenorphine (12-fold). Conclusions: An early phase characterised by the appearance of UGT gene transcripts and a later phase characterised by upregulation of UGT expression is demonstrated during human hepatic development. The differential regulation of UGT1A9 and UGT2B4 expression extends beyond two years of age and is capable of influencing hepatic glucuronidation of common therapeutic drugs in children. The development of hepatic UGT activities is significant for paediatric drug therapy and the prevention of adverse drug effects.
UDP-glucuronosyltransferases (UGTs) convert dietary constituents, drugs, and environmental mutagens to inactive hydrophilic glucuronides. Recent studies have shown that the expression of the UGT1 and UGT2 gene families is regulated in a tissue-specific fashion. Human small intestine represents a major site of resorption of dietary constituents and orally administered drugs and plays an important role in extrahepatic UGT directed metabolism. Expression of 13 UGT1A and UGT2B genes coupled with functional and catalytic analyses were studied using 18 small intestinal and 16 hepatic human tissue samples. Hepatic expression of UGT gene transcripts was without interindividual variation. In contrast, a polymorphic expression pattern of all the UGT genes was demonstrated in duodenal, jejunal, and ileal mucosa, with the exception of UGT1A10. To complement these studies, interindividual expression of UGT proteins and catalytic activities were also demonstrated. Hyodeoxycholic acid glucuronidation, catalyzed primarily by UGT2B4 and UGT2B7, showed a 7-fold interindividual variation in small intestinal duodenal samples, in contrast to limited variation in the presence of 4-methylumbelliferone, a substrate glucuronidated by most UGT1A and UGT2B gene products. Linkage of RNA expression patterns to protein abundance were also made with several mono-specific antibodies to the UGTs. These results are in contrast to a total absence of polymorphic variation in gene expression, protein abundance, and catalytic activity in liver. In addition, the small intestine exhibits considerable catalytic activity toward most of the different classes of substrates accepted for glucuronidation by the UGTs, which is supported by immunofluorescence analysis of UGT1A protein in the mucosal cell layer of the small intestine. Thus, tissue-specific and interindividual polymorphic regulation of UGT1A and UGT2B genes in small intestine is identified and implicated as molecular biological determinant contributing to interindividual prehepatic drug and xenobiotic metabolism in humans.
Compatible solutes such as glycine betaine and proline betaine are accumulated to exceedingly high intracellular levels by many organisms in response to high osmolarity to offset the loss of cell water. They are excluded from the immediate hydration shell of proteins and thereby stabilize their native structure. Despite their exclusion from protein surfaces, the periplasmic ligand-binding protein ProX from the Escherichia coli ATP-binding cassette transport system ProU binds the compatible solutes glycine betaine and proline betaine with high affinity and specificity. To understand the mechanism of compatible solute binding, we determined the high resolution structure of ProX in complex with its ligands glycine betaine and proline betaine. This crystallographic study revealed that cation-interactions between the positive charge of the quaternary amine of the ligands and three tryptophan residues forming a rectangular aromatic box are the key determinants of the high affinity binding of compatible solutes by ProX. The structural analysis was combined with site-directed mutagenesis of the ligand binding pocket to estimate the contributions of the tryptophan residues involved in binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.