Flexibility in physiological processes is essential to adequately respond to changes in environmental conditions. Madagascar is a particularly challenging environment because climatic conditions seem less predictable than in comparative ecosystems in other parts of the world. We used the reddish-gray mouse lemur (Microcebus griseorufus) from the most unpredictable environment in Madagascar as a model to investigate the flexibility of energy saving strategies to cope with the unpredictability of their habitat. For this we measured T (sk) of free-ranging mouse lemurs throughout the year using temperature data loggers. M. griseorufus showed a very strong seasonal as well as an individual flexibility in thermoregulation. During the rainy season all M. griseorufus remained normothermic. At the beginning of the dry season individuals started to exhibit different energy saving strategies: irregular short torpor bouts, regular daily torpor, prolonged torpor of a few days, and hibernation over several weeks. The accumulation of sufficient seasonal body fat was the crucial factor determining the thermal behavior of individuals. The observed intraspecific and sex independent variation in thermoregulatory patterns within one population inhabiting the same small geographical area is exceptional and gives M. griseorufus the ability to respond to current environmental as well as individual conditions. This thermal plasticity might be seen as a key to success and survival for M. griseorufus in an extremely unpredictable environment.
ABSTRACT. Assessments of ecosystem services (ES), that aim at informing decisions on land management, are increasing in number around the globe. Despite selected success stories, evidence for ES information being used in decision making is weak, partly because ES assessments are found to fall short in targeting information needs by decision makers. To improve their applicability in practice, we compared existing concepts of ES assessments with focus on informing land use decisions and identified opportunities for enhancing the relevance of ES assessments for decision making. In a process of codesign, building on experience of four projects in Brazil, China, Madagascar, and Vietnam, we developed a step-wise approach for better targeting ES assessments toward information needs in land use decisions. Our problem-oriented approach aims at (1) structuring ES information according to land use problems identified by stakeholders, (2) targeting context-specific ES information needs by decision makers, and (3) assessing relevant management options. We demonstrate how our approach contributes to making ES assessments more policy relevant and enhances the application of ES assessments as a tool for decision support.
The spiny forest of southwestern Madagascar is the driest and most unpredictable region of the island. It is characterized by a pronounced seasonality with high fluctuations in ambient temperature, low availability of food, and a lack of water during the cool dry season and, additionally, by changes in environmental conditions between years. One of the few mammalian species that manages to inhabit this challenging habitat is the reddish-gray mouse lemur (Microcebus griseorufus). The aim of our study was to determine whether this small primate uses continuous hibernation as an energy saving strategy, and if so, to characterize its physiological properties. We measured skin temperature of 16 free-ranging individuals continuously over 3 months during the cool dry season using collar temperature data loggers. Prolonged hibernation was found in three mouse lemurs and was not sex dependent (one male, two females). Skin temperature of hibernating individuals tracked ambient temperature passively with a minimum skin temperature of 6.5 degrees C and fluctuated strongly each day (up to 20 degrees C), depending on the insulation capacity of the hibernacula. Individuals remained in continuous hibernation even at an ambient temperature of 37 degrees C. The animals hibernated continuously during the dry season, and hibernation bouts were only interrupted by short spontaneous arousals. The study emphasizes that hibernation is an important measure to counter environmental challenge for more tropical species than previously thought, including primates. It furthermore provides evidence that tropical hibernation is functionally similar among tropical species.
The reddish-gray mouse lemur (Microcebus griseorufus) is one of only a few small mammals inhabiting the spiny forest of southwestern Madagascar. In this study we investigated the physiological adjustments which allow these small primates to persist under the challenging climatic conditions of their habitat. To this end we measured energy expenditure (metabolic rate) and body temperature of 24 naturally acclimatized mouse lemurs, kept in outdoor enclosures, during different seasons (summer, winter, and the transition period between the two seasons). Mouse lemurs displayed two main physiological strategies to compensate seasonal and diurnal fluctuations of ambient temperature. On the one hand, individuals entered hypometabolism with decreasing ambient temperature (T a) during the transition period and winter, enabling them to save up to 21 % energy per day (92 % per hour) compared with the normal resting metabolic rate at comparable T a. On the other hand, euthermic mouse lemurs also showed physiological adjustments to seasonality when resting: the lower critical temperature of the thermoneutral zone decreased from summer to winter by 7.5 °C, which allowed mouse lemurs to keep energy demands constant despite colder T as during winter. In addition, the basal metabolic rate was substantially lowered prior to the winter period, which facilitated accumulation of fat reserves. The combination of physiological modifications during euthermia in addition to hypometabolism, which can be individually adjusted according to external parameters and respective body condition, is important as it allows M. griseorufus to cope with the environmental variability of an energetically challenging habitat.
Study ObjectivesIt has long been suspected that sleep is important for regulating body temperature and metabolic-rate. Hibernation, a state of acute hypothermia and reduced metabolic-rate, offers a promising system for investigating those relationships. Prior studies in hibernating ground squirrels report that, although sleep occurs during hibernation, it manifests only as non-REM sleep, and only at relatively high temperatures. In our study, we report data on sleep during hibernation in a lemuriform primate, Cheirogaleus medius. As the only primate known to experience prolonged periods of hibernation and as an inhabitant of more temperate climates than ground squirrels, this animal serves as an alternative model for exploring sleep temperature/metabolism relationships that may be uniquely relevant to understanding human physiology.Measurements and ResultsWe find that during hibernation, non-REM sleep is absent in Cheirogaleus. Rather, periods of REM sleep occur during periods of relatively high ambient temperature, a pattern opposite of that observed in ground squirrels. Like ground squirrels, however, EEG is marked by ultra-low voltage activity at relatively low metabolic-rates.ConclusionsThese findings confirm a sleep-temperature/metabolism link, though they also suggest that the relationship of sleep stage with temperature/metabolism is flexible and may differ across species or mammalian orders. The absence of non-REM sleep suggests that during hibernation in Cheirogaleus, like in the ground squirrel, the otherwise universal non-REM sleep homeostatic response is greatly curtailed or absent. Lastly, ultra-low voltage EEG appears to be a cross-species marker for extremely low metabolic-rate, and, as such, may be an attractive target for research on hibernation induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.