NLS proteins are transported into the nucleus by the importin alpha/beta heterodimer. Importin alpha binds the NLS, while importin beta mediates translocation through the nuclear pore complex. After translocation, RanGTP, whose predicted concentration is high in the nucleus and low in the cytoplasm, binds importin beta and displaces importin alpha. Importin alpha must then be returned to the cytoplasm, leaving the NLS protein behind. Here, we report that the previously identified CAS protein mediates importin alpha re-export. CAS binds strongly to importin alpha only in the presence of RanGTP, forming an importin alpha/CAS/RanGTP complex. Importin alpha is released from this complex in the cytoplasm by the combined action of RanBP1 and RanGAP1. CAS binds preferentially to NLS-free importin alpha, explaining why import substrates stay in the nucleus.
We have reproduced the posttranslational mode of protein translocation across the endoplasmic reticulum membrane with reconstituted proteoliposomes containing a purified complex of seven yeast proteins. This Sec complex includes a heterotrimeric Sec61p complex, homologous to that in mammals, as well as all other membrane proteins found in genetic screens for translocation components. Efficient posttranslational translocation also requires the addition of lumenal Kar2p (BiP) and ATP. The trimeric Sec61p complex also exists as a separate entity that, in contrast with the large Sec complex, is associated with membrane-bound ribosomes. We therefore hypothesize that distinct membrane protein complexes function in co- and posttranslational translocation pathways.
Importin consists of a 60 and a 90 kD subunit. Together, they constitute a cytosolic receptor for nuclear localization signals that enables import substrates to bind to the nuclear envelope.
Importin b-related receptors mediate translocation through nuclear pore complexes. Co-operation with the RanGTPase system allows them to bind and subsequently release their substrates on opposite sides of the nuclear envelope, which in turn ensures a directed nucleocytoplasmic transport. Here we identify a novel family member from higher eukaryotes that functions primarily, but not exclusively, in import. It accounts for nuclear accumulation of the SUMO-1/sentrin-conjugating enzyme hUBC9 and mediates import of the RBM8 (Y14) protein, and is therefore referred to as importin 13 (Imp13). Unexpectedly, Imp13 also shows export activity towards the translation initiation factor eIF1A and is thus a case where a single importin b-like receptor transports different substrates in opposite directions. However, Imp13 operates differently from typical exportins in that the binding of eIF1A to Imp13 is only regulated indirectly by RanGTP, and the cytoplasmic release of eIF1A from Imp13 is triggered by the loading of import substrates onto Imp13.
Importin-alpha mediates nuclear protein import by binding nuclear localization signals and importin-beta. We find approximately 30% of SRP1p, the yeast importin-alpha, in a nuclear complex with the Saccharomyces cerevisiae nuclear cap-binding protein complex (CBC). Similarly, a large fraction of Xenopus CBC is associated with importin-alpha in the nucleus. CBC promotes nuclear export of capped U snRNAs and shuttles between nucleus and cytoplasm. The CBC-importin-alpha complex binds specifically to capped RNA, suggesting that CBC might shuttle while bound to importin-alpha. Strikingly, importin-beta binding displaces the RNA from the CBC-importin-alpha complex. Thus, the commitment of CBC for nuclear reentry triggers the release of the export substrate into the cytoplasm. We provide evidence for a mechanism that ensures that importin-mediated RNA release is a specifically cytoplasmic event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.