CellProfiler has enabled the scientific research community to create flexible, modular image analysis pipelines since its release in 2005. Here, we describe CellProfiler 3.0, a new version of the software supporting both whole-volume and plane-wise analysis of three-dimensional (3D) image stacks, increasingly common in biomedical research. CellProfiler’s infrastructure is greatly improved, and we provide a protocol for cloud-based, large-scale image processing. New plugins enable running pretrained deep learning models on images. Designed by and for biologists, CellProfiler equips researchers with powerful computational tools via a well-documented user interface, empowering biologists in all fields to create quantitative, reproducible image analysis workflows.
The generation of a collection of human induced pluripotent stem cell (hiPSC) lines expressing endogenously GFP-tagged proteins using CRISPR/Cas9 methods is described. The methods used and the genomic and cell biological data validating the GFP-tagged hiPSC lines are also presented.
Crawling cells of various morphologies displace themselves in their biological environments by a similar overall mechanism of protrusion through actin assembly at the front coordinated with retraction at the rear. Different cell types organize very distinct protruding structures, yet they do so through conserved biochemical mechanisms to regulate actin polymerization dynamics and vary the mechanical properties of these structures. The moving cell must spatially and temporally regulate the biochemical interactions of its protein components to exert control over higher-order dynamic structures created by these proteins and global cellular responses four or more orders of magnitude larger in scale and longer in time than the individual protein-protein interactions that comprise them. To fulfill its biological role, a cell globally responds with high sensitivity to a local perturbation or signal and coordinates its many intracellular actin-based functional structures with the physical environment it experiences to produce directed movement. This review attempts to codify some unifying principles for cell motility that span organizational scales from single protein polymer filaments to whole crawling cells.
Mitochondria must grow with the growing cell to ensure proper cellular physiology and inheritance upon division. We measured the physical size of mitochondrial networks in budding yeast and found that mitochondrial network size increased with increasing cell size and that this scaling relation occurred primarily in the bud. The mitochondria to cell size ratio continually decreased in aging mothers over successive generations. However, regardless of mother age or mitochondrial content, all buds attained the same average ratio. Thus, yeast populations achieve a stable scaling relation between mitochondrial content and cell size despite asymmetry in inheritance.
We present a CRISPR/Cas9 genome editing strategy to systematically tag endogenous proteins with fluorescent tags in human inducible pluripotent stem cells. To date we have generated multiple human iPSC lines with GFP tags for 10 proteins representing key cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, lamin B1, non-muscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome editing methodology using Cas9 ribonuclear protein electroporation and fluorescence-based enrichment of edited cells resulted in <0.1-24% HDR across all experiments. Clones were generated from each edited population and screened for precise editing. ~25% of the clones contained precise mono-allelic edits at the targeted locus. Furthermore, 92% (36/39) of expanded clonal lines satisfied key quality control criteria including genomic stability, appropriate expression and localization of the tagged protein, and pluripotency. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. The data described here, including our editing protocol, genetic screening, quality control assays, and imaging observations, can serve as an initial resource for genome editing in cell biology and stem cell research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.